813 resultados para Case Based Computing
Resumo:
A Case-Based Reasoning (CBR) tool is software that can be used to develop several applications that require cased-based reasoning methodology. CBR shells are kind of application generators with graphical user interface. They can be used by non-programmer users but the extension or integration of new components in these tools is not possible. In this paper we analyzed three CBR object-oriented framework development environments CBR*Tools, CAT-CBR, and JColibri. These frameworks work as open software development environment and facilitate the reuse of their design as well as implementations.
Resumo:
Knitwear design is a creative activity that is hard to automate using the computer. The production of the associated knitting pattern, however, is repetitive, time-consuming and error-prone, calling for automation. Our objectives are two-fold: To facilitate the design and to ease the burden of calculations and checks in pattern production. We conduct a feasibility study for applying case-based reasoning in knitwear design: We describe appropriate methods and show how they can be implemented. © Cranfield University 2009.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
INTRODUCTION: Professionalism is a key attribute for health professionals. Yet, it is unknown how much faculty development is directed toward skills and behaviours of faculty professionalism. Faculty professionalism includes boundaries in teacher-student relationships, self-reflection, assuring one's own fitness for duty, and maintaining confidentiality when appropriate. METHODS: For five years, we have incorporated faculty professionalism as a routine agenda item for the monthly Physician Assistant Programme faculty meetings, allowing faculty members to introduce issues they are comfortable sharing or have questions about. We also have case discussions of faculty professionalism within faculty meetings every three months. RESULTS: Faculty professionalism is important in the daily work lives of faculty members and including this as part of routine agendas verifies its importance. A faculty survey showed that a majority look forward to the quarterly faculty professionalism case discussions. These have included attempted influence in the admissions process, student/faculty social boundaries, civic professionalism, students requesting medical advice, and self-disclosure. CONCLUSION: A preventive approach works better than a reactionary approach to faculty missteps in professionalism. Routine discussion of faculty professionalism normalizes the topic and is helpful to both new and experienced faculty members. We recommend incorporation of faculty professionalism as a regular agenda item in faculty meetings.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Abstract not available
Resumo:
There may be advantages to be gained by combining Case-Based Reasoning (CBR) techniques with numerical models. In this paper we consider how CBR can be used as a flexible query engine to improve the usability of numerical models. Particularly they can help to solve inverse and mixed problems, and to solve constraint problems. We discuss this idea with reference to the illustrative example of a pneumatic conveyor. We describe a model of the problem of particle degradation in such a conveyor, and the problems faced by design engineers. The solution of these problems requires a system that allows iterative sharing of control between user, CBR system, and numerical model. This multi-initiative interaction is illustrated for the pneumatic conveyor by means of Unified Modeling Language (UML) collaboration and sequence diagrams. We show approaches to the solution of these problems via a CBR tool.
Resumo:
In this paper, we present a case-based reasoning (CBR) approach solving educational time-tabling problems. Following the basic idea behind CBR, the solutions of previously solved problems are employed to aid finding the solutions for new problems. A list of feature-value pairs is insufficient to represent all the necessary information. We show that attribute graphs can represent more information and thus can help to retrieve re-usable cases that have similar structures to the new problems. The case base is organised as a decision tree to store the attribute graphs of solved problems hierarchically. An example is given to illustrate the retrieval, re-use and adaptation of structured cases. The results from our experiments show the effectiveness of the retrieval and adaptation in the proposed method.
Resumo:
The structured representation of cases by attribute graphs in a Case-Based Reasoning (CBR) system for course timetabling has been the subject of previous research by the authors. In that system, the case base is organised as a decision tree and the retrieval process chooses those cases which are sub attribute graph isomorphic to the new case. The drawback of that approach is that it is not suitable for solving large problems. This paper presents a multiple-retrieval approach that partitions a large problem into small solvable sub-problems by recursively inputting the unsolved part of the graph into the decision tree for retrieval. The adaptation combines the retrieved partial solutions of all the partitioned sub-problems and employs a graph heuristic method to construct the whole solution for the new case. We present a methodology which is not dependant upon problem specific information and which, as such, represents an approach which underpins the goal of building more general timetabling systems. We also explore the question of whether this multiple-retrieval CBR could be an effective initialisation method for local search methods such as Hill Climbing, Tabu Search and Simulated Annealing. Significant results are obtained from a wide range of experiments. An evaluation of the CBR system is presented and the impact of the approach on timetabling research is discussed. We see that the approach does indeed represent an effective initialisation method for these approaches.
Resumo:
This paper studies Knowledge Discovery (KD) using Tabu Search and Hill Climbing within Case-Based Reasoning (CBR) as a hyper-heuristic method for course timetabling problems. The aim of the hyper-heuristic is to choose the best heuristic(s) for given timetabling problems according to the knowledge stored in the case base. KD in CBR is a 2-stage iterative process on both case representation and the case base. Experimental results are analysed and related research issues for future work are discussed.
Resumo:
This paper presents a new hyper-heuristic method using Case-Based Reasoning (CBR) for solving course timetabling problems. The term Hyper-heuristics has recently been employed to refer to 'heuristics that choose heuristics' rather than heuristics that operate directly on given problems. One of the overriding motivations of hyper-heuristic methods is the attempt to develop techniques that can operate with greater generality than is currently possible. The basic idea behind this is that we maintain a case base of information about the most successful heuristics for a range of previous timetabling problems to predict the best heuristic for the new problem in hand using the previous knowledge. Knowledge discovery techniques are used to carry out the training on the CBR system to improve the system performance on the prediction. Initial results presented in this paper are good and we conclude by discussing the con-siderable promise for future work in this area.
Resumo:
An earlier Case-based Reasoning (CBR) approach developed by the authors for educational course timetabling problems employed structured cases to represent the complex relationships between courses. Previous solved cases represented by attribute graphs were organized hierarchically into a decision tree. The retrieval searches for graph isomorphism among these attribute graphs. In this paper, the approach is further developed to solve a wider range of problems. We also attempt to retrieve those graphs that have common similar structures but also have some differences. Costs that are assigned to these differences have an input upon the similarity measure. A large number of experiments are performed consisting of different randomly produced timetabling problems and the results presented here strongly indicate that a CBR approach could provide a significant step forward in the development of automated system to solve difficult timetabling problems. They show that using relatively little effort, we can retrieve these structurally similar cases to provide high quality timetables for new timetabling problems.
Resumo:
The structured representation of cases by attribute graphs in a Case-Based Reasoning (CBR) system for course timetabling has been the subject of previous research by the authors. In that system, the case base is organised as a decision tree and the retrieval process chooses those cases which are sub attribute graph isomorphic to the new case. The drawback of that approach is that it is not suitable for solving large problems. This paper presents a multiple-retrieval approach that partitions a large problem into small solvable sub-problems by recursively inputting the unsolved part of the graph into the decision tree for retrieval. The adaptation combines the retrieved partial solutions of all the partitioned sub-problems and employs a graph heuristic method to construct the whole solution for the new case. We present a methodology which is not dependant upon problem specific information and which, as such, represents an approach which underpins the goal of building more general timetabling systems. We also explore the question of whether this multiple-retrieval CBR could be an effective initialisation method for local search methods such as Hill Climbing, Tabu Search and Simulated Annealing. Significant results are obtained from a wide range of experiments. An evaluation of the CBR system is presented and the impact of the approach on timetabling research is discussed. We see that the approach does indeed represent an effective initialisation method for these approaches.
Resumo:
This paper presents a case-based heuristic selection approach for automated university course and exam timetabling. The method described in this paper is motivated by the goal of developing timetabling systems that are fundamentally more general than the current state of the art. Heuristics that worked well in previous similar situations are memorized in a case base and are retrieved for solving the problem in hand. Knowledge discovery techniques are employed in two distinct scenarios. Firstly, we model the problem and the problem solving situations along with specific heuristics for those problems. Secondly, we refine the case base and discard cases which prove to be non-useful in solving new problems. Experimental results are presented and analyzed. It is shown that case based reasoning can act effectively as an intelligent approach to learn which heuristics work well for particular timetabling situations. We conclude by outlining and discussing potential research issues in this critical area of knowledge discovery for different difficult timetabling problems.
Resumo:
Abstract not available