985 resultados para Cardiovascular morbidity
Resumo:
Pulse-wave velocity (PWV) is considered as the gold-standard method to assess arterial stiffness, an independent predictor of cardiovascular morbidity and mortality. Current available devices that measure PWV need to be operated by skilled medical staff, thus, reducing the potential use of PWV in the ambulatory setting. In this paper, we present a new technique allowing continuous, unsupervised measurements of pulse transit times (PTT) in central arteries by means of a chest sensor. This technique relies on measuring the propagation time of pressure pulses from their genesis in the left ventricle to their later arrival at the cutaneous vasculature on the sternum. Combined thoracic impedance cardiography and phonocardiography are used to detect the opening of the aortic valve, from which a pre-ejection period (PEP) value is estimated. Multichannel reflective photoplethysmography at the sternum is used to detect the distal pulse-arrival time (PAT). A PTT value is then calculated as PTT = PAT - PEP. After optimizing the parameters of the chest PTT calculation algorithm on a nine-subject cohort, a prospective validation study involving 31 normo- and hypertensive subjects was performed. 1/chest PTT correlated very well with the COMPLIOR carotid to femoral PWV (r = 0.88, p < 10 (-9)). Finally, an empirical method to map chest PTT values onto chest PWV values is explored.
Resumo:
Chronic mountain sickness (CMS) is a major public health problem characterized by exaggerated hypoxemia and erythrocytosis. In more advanced stages, patients with CMS often present with functional and structural changes of the pulmonary circulation, but there is little information on the systemic circulation. In patients with diseases associated with chronic hypoxemia at low altitude, systemic vascular function is altered. We hypothesized that patients with CMS have systemic vascular dysfunction that may predispose them to increased systemic cardiovascular morbidity.
Resumo:
Sleep-disordered breathing represents a risk factor for cardiovascular morbidity and mortality and negatively affects short-term and long-term outcome after an ischemic stroke or transient ischemic attack. The effect of continuous positive airways pressure in patients with sleep-disordered breathing and acute cerebrovascular event is poorly known. The SAS CARE 1 study assesses the effects of sleep-disordered breathing on clinical evolution, vascular functions, and markers within the first three-months after an acute cerebrovascular event. The SAS CARE 2 assesses the effect of continuous positive airways pressure on clinical evolution, cardiovascular events, and mortality as well as vascular functions and markers at 12 and 24 months after acute cerebrovascular event.
Resumo:
Vascular and soft tissue calcification contributes to cardiovascular morbidity and mortality in both the general population and CKD. Because calcium and phosphate serum concentrations are near supersaturation, the balance of inhibitors and promoters critically influences the development of calcification. An assay that measures the overall propensity for calcification to occur in serum may have clinical use. Here, we describe a nanoparticle-based assay that detects, in the presence of artificially elevated calcium and phosphate concentrations, the spontaneous transformation of spherical colloidal primary calciprotein particles (CPPs) to elongate crystalline secondary CPPs. We used characteristics of this transition to describe the intrinsic capacity of serum to inhibit the precipitation of calcium and phosphate. Using this assay, we found that both the sera of mice deficient in fetuin-A, a serum protein that inhibits calcification, and the sera of patients on hemodialysis have reduced intrinsic properties to inhibit calcification. In summary, we developed a nanoparticle-based test that measures the overall propensity for calcification in serum. The clinical use of the test requires evaluation in a prospective study.
Resumo:
Sleep-disordered breathing (SDB) represents a risk factor for cardiovascular morbidity after a cerebral ischemic event (acute ischemic event, ischemic stroke, or transient ischemic attack). In the present study, endothelial function and arterial stiffness were analyzed in patients who experienced a postacute ischemic event with relation to SDB, sleep disruption, and nocturnal oxygenation parameters.
Resumo:
Inhaled particles may cause increased pulmonary and cardiovascular morbidity and mortality. The wall structures of airways and alveoli act as a series of structural and functional barriers against inhaled particles. Deposited particles are displaced and come into close association with epithelial cells, macrophages and dendritic cells. The cellular interplay after particle deposition in a triple cell co-culture model of the human airway wall was investigated by laser scanning microscopy. Furthermore, the cellular response was determined by measurement of TNF-alpha. Dendritic cells gained access to the apical side of the epithelium where they sampled particles and interacted with macrophages.
Resumo:
Combustion-derived and synthetic nano-sized particles (NSP) have gained considerable interest among pulmonary researchers and clinicians for two main reasons: 1) Inhalation exposure to combustion-derived NSP was associated with increased pulmonary and cardiovascular morbidity and mortality as suggested by epidemiological studies. Experimental evidence has provided a mechanistic picture of the adverse health effects associated with inhalation of combustion-derived and synthetic NSP. 2) The toxicological potential of NSP contrasts with the potential application of synthetic NSP in technological as well as medicinal settings with the latter including the use of NSP as diagnostics or therapeutics. In order to shed light on this paradox, this article aims to highlight recent findings about the interaction of inhaled NSP with the structures of the respiratory tract including surfactant and alveolar macrophages and epithelial cells. Cellular responses to NSP exposure include the generation of reactive oxygen species and the induction of an inflammatory response. Furthermore, this review places special emphasis on methodological differences between experimental studies and the caveats associated with the dose metrics and points out ways to overcome inherent methodological problems. Key words: electron tomography, surfactant, translocation, oxidative stress, inflammation.
Resumo:
Peripheral arterial occlusive disease (PAOD) is a manifestation of systemic atherosclerosis strongly associated with a high risk of cardiovascular morbidity and mortality. In a considerable proportion of patients with PAOD, revascularization either by endovascular means or by open surgery combined with best possible risk factor modification does not achieve limb salvage or relief of ischaemic rest pain. As a consequence, novel therapeutic strategies have been developed over the last two decades aiming to promote neovascularization and remodelling of collaterals. Gene and stem cell therapy are the main directions for clinical investigation concepts. For both, preclinical studies have shown promising results using a wide variety of genes encoding for growth factors and populations of adult stem cells, respectively. As a consequence, clinical trials have been performed applying gene and stem cell-based concepts. However, it has become apparent that a straightforward translation into humans is not possible. While several trials reported relief of symptoms and functional improvement, other trials did not confirm this early promise of efficacy. Ongoing clinical trials with an improved study design are needed to confirm the potential that gene and cell therapy may have and to prevent the gaps in our scientific knowledge that will jeopardize the establishment of angiogenic therapy as an additional medical treatment of PAOD. This review summarizes the experimental background and presents the current status of clinical applications and future perspectives of the therapeutic use of gene and cell therapy strategies for PAOD.
Resumo:
Anthropogenic nano-sized particles (NSP), ie, particles with a diameter of less than 100 nm, are generated with or without purpose as chemically and physically well-defined materials or as a consequence of combustion processes respectively. Inhalation of NSP occurs on a regular basis due to air pollution and is associated with an increase in respiratory and cardiovascular morbidity and mortality. Manufactured NSP may intentionally be inhaled as pharmaceuticals or unintentionally during production at the workplace. Hence the interactions of NSP with the respiratory tract are currently under intensive investigation. Due to special physicochemical features of NSP, its biological behaviour may differ from that of larger sized particles. Here we review two important themes of current research into the effects of NSP on the lungs: 1) The potential of NSP to cross the blood-air barrier of the lungs, thus gaining access to the circulation and extrapulmonary organs. It is currently accepted that a small fraction of inhaled NSP may translocate to the circulation. The significance of this translocation requires further research. 2) The entering mechanisms of NSP into different cell types. There is evidence that NSP are taken up by cells via well-known pathways of endocytosis but also via different mechanisms not well understood so far. Knowledge of the quantitative relationship between the different entering mechanisms and cellular responses is not yet available but is urgently needed in order to understand the effects of intentionally or unintentionally inhaled NSP on the respiratory tract.
Resumo:
CONTEXT: Androgen deprivation therapy (ADT) is increasingly used for the treatment of prostate cancer (PCa), even in clinical settings in which there is no evidence-based proof of prolonged overall survival (OS). ADT, however, may be associated with numerous side effects, including an increased therapy-related cardiovascular mortality. OBJECTIVE: To discuss different clinical settings in which ADT is currently used and to critically weigh the benefits of ADT against its possible side effects. EVIDENCE ACQUISITION: A MEDLINE search was conducted to identify original articles and review articles addressing the efficacy and side effects of ADT for the treatment of PCa. Keywords consisted of prostate cancer, hormonal therapy, adverse effects, radical prostatectomy, and radiotherapy. The articles with the highest level of evidence for the various examined end points were identified with the consensus of all authors and were reviewed. EVIDENCE SYNTHESIS: Even short-term use of ADT may lead to numerous side effects, such as osteoporosis, obesity, sarcopenia, lipid alterations, insulin resistance, and increased risk for diabetes and cardiovascular morbidity. Despite these side effects, ADT is commonly used in various clinical settings in which a clear effect on improved OS has not been shown. CONCLUSIONS: ADT is associated with an increased risk of multiple side effects that may reduce quality of life and/or OS. Consequently, these issues should be discussed in detail with patients and their families before initiation of ADT. ADT should be used with knowledge of its potential long-term side effects and with possible lifestyle interventions, especially in settings with the highest risk-benefit ratio, to alleviate comorbidities.
Growth hormone replacement in adults with growth hormone deficiency: assessment of current knowledge
Resumo:
The recent availability of recombinant human growth hormone (GH) has led to intense investigation of the consequences of adult GH deficiency (GHD) and the effects of GH replacement. These studies have led to the identification of a characteristic syndrome of GHD consisting of decreased mood and well-being, with alterations in body composition and substrate metabolism. In both placebo-controlled and open studies, GH replacement therapy has consistently been shown to reverse or correct these features. Whether long-term GH replacement will result in a reduction of osteoporotic fractures, cardiovascular morbidity and mortality is not yet known. To date, no permanent serious adverse effects have been associated with GH replacement in GHD, and although currently expensive, it is anticipated that GH replacement will become routine in the treatment of the severely hypopituitary adult.
Resumo:
Endothelial dysfunction is recognized as the primum movens in the development of atherosclerosis. Its crucial role in both cardiovascular morbidity and mortality has been confirmed. In the past, research was hampered by the invasive character of endothelial function assessment. The development of non-invasive and feasible techniques to measure endothelial function has facilitated and promoted research in various adult and paediatric subpopulations. To avoid user dependence of flow-mediated dilation (FMD), which evaluates nitric oxide dependent vasodilation in large vessels, a semi-automated, method to assess peripheral microvascular function, called peripheral arterial tonometry (Endo-PAT®), was recently introduced. The number of studies using this technique in children and adolescents is rapidly increasing, yet there is no consensus with regard to either measuring protocol or data analysis of peripheral arterial tonometry in children and adolescents. Most paediatric studies simply applied measuring and analysing methodology established in adults, a simplification that may not be appropriate. This paper provides a detailed description of endothelial function assessment using the Endo-PAT for researchers and clinicians. We discuss clinical and methodological considerations and point out the differences between children, adolescents and adults. Finally, the main aim of this paper is to provide recommendations for a standardised application of Endo-PAT in children and adolescents, as well as for population-specific data analysis methodology.
Resumo:
Oral contraceptives containing synthetic oestrogens have been used successfully as birth control for > 40 years and are currently prescribed to > 100 million women worldwide. Several new progestins have been introduced and the third generation of progestins has now been available for two decades. Oral contraceptives are prescribed over a prolonged period of time and therefore substantially impact on hormonal, metabolic and plasmatic functions. Oral contraceptives increase the risk for venous thrombosis and pulmonary embolism, particularly if associated with confounding factors, such as genetic predisposition, smoking, hypertension or obesity. The risk of developing coronary artery disease is also increased in users with cardiovascular risk factors. This article discusses mechanistic and clinical issues and reviews the need for novel approaches targeting the considerable side effects in order to reduce cardiovascular morbidity in women using oral contraceptives.
Resumo:
Biomarkers of blood lipid modification and oxidative stress have been associated with increased cardiovascular morbidity. We sought to determine whether these biomarkers were related to functional indices of stenosis severity among patients with stable coronary artery disease. We studied 197 consecutive patients with stable coronary artery disease due to single vessel disease. Fractional flow reserve (FFR) ≤ 0.80 was assessed as index of a functionally significant lesion. Serum levels of secretory phospholipase A2 (sPLA2) activity, secretory phospholipase A2 type IIA (sPLA2-IIA), myeloperoxydase (MPO), lipoprotein-associated phospholipase A2 (Lp-PLA2), and oxidized low-density lipoprotein (OxLDL) were assessed using commercially available assays. Patients with FFR > 0.8 had higher sPLA2 activity, sPLA2 IIA, and OxLDL levels than patients with FFR ≤ 0.8 (21.25 [16.03-27.28] vs 25.85 [20.58-34.63] U/mL, p < 0.001, 2.0 [1.5-3.4] vs 2.6 [2.0-3.4] ng/mL, p < 0.01; and 53.0 [36.0-71.0] vs 64.5 [50-89.25], p < 0.001 respectively). Patients with FFR > 0.80 had similar Lp-PLA2 and MPO levels versus those with FFR ≤ 0.8. sPLA2 activity, sPLA2 IIA significantly increased area under the curve over baseline characteristics to predict FFR ≤ 0.8 (0.67 to 0.77 (95 % confidence interval [CI]: 0.69-0.85) p < 0.01 and 0.67 to 0.77 (95 % CI: 0.69-0.84) p < 0.01, respectively). Serum sPLA2 activity as well as sPLA2-IIA level is related to functional characteristics of coronary stenoses in patients with stable coronary artery disease.
Resumo:
BACKGROUND Peripheral arterial disease (PAD) is a progressive vascular disease associated with a high risk of cardiovascular morbidity and death. Antithrombotic prevention is usually applied by prescribing the antiplatelet agent aspirin. However, in patients with PAD aspirin fails to provide protection against myocardial infarction and death, only reducing the risk of ischemic stroke. Platelets may play a role in disease development, but this has not been tested by proper mechanistic studies. In the present study, we performed a systematic evaluation of platelet reactivity in whole blood from patients with PAD using two high-throughput assays, i.e. multi-agonist testing of platelet activation by flow cytometry and multi-parameter testing of thrombus formation on spotted microarrays. METHODS Blood was obtained from 40 patients (38 on aspirin) with PAD in majority class IIa/IIb and from 40 age-matched control subjects. Whole-blood flow cytometry and multiparameter thrombus formation under high-shear flow conditions were determined using recently developed and validated assays. RESULTS Flow cytometry of whole blood samples from aspirin-treated patients demonstrated unchanged high platelet responsiveness towards ADP, slightly elevated responsiveness after glycoprotein VI stimulation, and decreased responsiveness after PAR1 thrombin receptor stimulation, compared to the control subjects. Most parameters of thrombus formation under flow were similarly high for the patient and control groups. However, in vitro aspirin treatment caused a marked reduction in thrombus formation, especially on collagen surfaces. When compared per subject, markers of ADP- and collagen-induced integrin activation (flow cytometry) strongly correlated with parameters of collagen-dependent thrombus formation under flow, indicative of a common, subject-dependent regulation of both processes. CONCLUSION Despite of the use of aspirin, most platelet activation properties were in the normal range in whole-blood from class II PAD patients. These data underline the need for more effective antithrombotic pharmacoprotection in PAD.