828 resultados para Carbon steel electrodes
Resumo:
The high hydrogen evolution overpotential of a bismuth electrode makes it a powerful electrode for cathodic electro-chemiluminescence studies in aqueous solutions.
Resumo:
An on-chip disk electrode based on sol-gel-derived carbon composite material could be easily and reproducibly fabricated. Unlike other carbon-based electrodes reported previously, this detector is rigid, convenient to fabricate, and amenable to chemical modifications. Based on the stable and reproducible characters of this detector, a copper particle-modified detector was developed for the detection of carbohydrates which extends the application of the carbon-based electrode. In our experiments, the performance of the new integrated detector for rapid on-chip measurement of epinephrine and glucose was illustrated. Experimental procedures including the fabrication of this detector, the configuration of separation channel outlet and electrode verge, and the performance characteristics of this new electrochemical detector were investigated.
Resumo:
The electrochemiluminescence (ECL) of dichlorotris (1,10-phenanthroline) ruthenium (11) [Ru(phen)(3)(2+)] with peroxydisulfate (S2O82-) was first described. The use of carbon paste electrodes, organic solvent modified electrodes, allowed obtaining ECL in purely aqueous solution. The ECL produced by the reaction of electrogenerated C Ru(phen)(3)(2+) with the strongly oxidizing intermediate SO4-., was observed only when the applied potential was negative enough to reduce Ru(phen)(3)(2+). In comparison with Ru(bpy)(3)(2+)/S2O82- ECL, the Ru(phen)(3)(2+)/O-8(2-)/S2O82- ECL was more stable in aqueous solution. It was not affected by the storage of the carbon paste electrodes, and it quenched only at quite high S2O82- concentrations. The ECL intensity was a function of S2O82- concentration, increasing linearly with the S2O82- concentration from 5 X 10(-6) to 2 X 10(-3) mol l(-1), and dropping off sharply at S2O82- concentration higher than 20 mmol l(-1). The proposed ECL method with Ru(phen)(3)(2+) was sensitive and selective for the determination of S2O82-. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Twelve mediators have been modified by adsorption onto the paraffin impregnated graphite electrodes (IGE). The resulting electrodes exhibit electrocatalytic activity of different degrees towards oxidation of 1,4-dihydronicotinamide adenine dinucleotide (NADH). The electrocatalytic ability of the chemically modified electrode (CME) depends mainly on the formal potential and molecular structure of mediator. The formation of the charge transfer complex between NADH and adsorbed mediator has been demonstrated by the experiments using a rotating disk electrode. An electrocatalytic scheme obeying Michaelis-Menten kinetics has been confirmed, and some kinetic parameters were estimated. The solution pH influences markedly the electrocatalytic activity of the modified electrode. Various possible reasons are discussed.
Resumo:
Amperometric biosensors based on surface modifications of electrodes are described. Cobalt porphyrins modified on glassy carbon and carbon fiber electrodes can greatly decrease the overpotential and increase the sensitivity of detection due to EC electroc
Resumo:
A newly synthesized benzoic-triazole derivative 3,5-dimethylbenzoic acid [1,2,4]triazol-l-ylmethyl ester (DBT) was investigated as a corrosion inhibitor of mild steel in 1 M HCl solution using weight loss measurements, potentiodynamic polarization, SEM, and EIS methods. The results revealed that DBT was an excellent inhibitor, and the inhibition efficiencies obtained from weight loss and electrochemical experiments were in good agreement. Using the potentiodynamic polarization technique, the inhibitor was proved to have a mixed-type character for mild steel by suppressing both anodic and cathodic reactions on the metal surface. The number of water molecules (X) replaced by a molecule of organic adsorbate was determined from the Flory-Huggins, Dhar-Flory-Huggins, and Bockris-Swinkels substitutional adsorption isotherms applied to the data obtained from the gravimetric experiments performed on a mild steel specimen in 1 M HCl solution at 298 K.
Resumo:
Research on corrosion of steel structures in various marine environments is essential to assure the safety of structures and can effectively prolong their service life. In order to provide data for anticorrosion design of oil exploitation structures in the Bohai Bay, the corrosion behaviour and properties of steel in beach soil, using typical steel samples (Q235A carbon steel and API 5Lx52 pipeline steel) buried 0.5, 1.0 and 1.5 m deep under typical beach soils in Tanggu, Yangjiaogou, Xingcheng, Yingkou and Chengdao for 1-2 years were studied. The carbon steel and pipeline steel were both corroded severely in the beach soil, with the form of corrosion being mainly uniform with some localised attack (pitting corrosion). The corrosion rate of the carbon steel was up to 0.16 mm/year with a maximum penetration depth of 0.76 mm and that of the pipeline steel was up to 0.14 mm/year, with a maximum penetration depth of 0.53 mm. Compared with carbon steel, the pipeline steel generally had better corrosion resistance in most test beach soils. The corrosion rates and the maximum corrosion depths of carbon steel and pipeline steel were in the order: Tanggu>Xingcheng>Chengdao>Yingkou>Yangjiaogou with corrosion altering with depth of burial. The corrosion of steel in the beach soil involves a mixed mechanism with different degrees of soil aeration and microbial activity present. It is concluded that long term in situ plate laying experiments must be carried out to obtain data on steel corrosion in this beach soil environment so that the effective protection measures can be implemented.
Resumo:
The inhibitory effect of 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) and 2,4,6-tri(2-pyridyl)-s-triazine (TPT) molecules on the corrosion of mild steel in 1 mol/L HCl and microcosmic inhibitory mechanism were investigated by X-ray photoelectron spectroscopy and ellipsometry. XPS results showed that C Is and N Is peaks of TTC, C Is and N Is peaks of TPT and their integral areas were obtained, which suggested the layer of the inhibitors (TTC or TPT) should have effectively protected the mild steel surface from the corrosion; and the depression from the inhibitors for the corrosion of mild steel surface was studied using ellipsometry combined with potentiodynamic polarization and the phasic difference was gained, which displayed the inhibitory coverage of the inhibitors formed.
Resumo:
A series of simulation experiments on carbon steel (A(3) steel) and low alloy steel (16 Mn steel) in marine atmosphere (MA), seawater (SW) and seabed sediment (SBS) including rough sea sand, fine sea sand and seabed mud were carried out indoors for a year or so by means of individually hanging plates (IHP) and electrically connected hanging plates (ECHP). The corrosion of steels in SBS was mainly due to the macrogalvanic cell effect. The steel plates at the bottom of SBS, as the anode of a macrogalvanic cell, showed the heaviest corrosion with a corrosion rate of up to 0.12 mm/a, approximately equal to that of steel plates in marine atmosphere. The test results showed that the corrosion rates of A(3) and 16 Mn steel in marine environment were in the order: MA > SW > SBS by the IHP method; and MA > SBS > SW by the ECHP method. The corrosion rates of steels in the water/sediment interface were directly proportional to the grain size of the SBS by the ECHP method, but those of steels in the water/sediment interface did not vary with the grain size of SBS by the IHP method. The corrosion rate of low-alloy steel was a little higher than that of carbon steel. The results of this study have important applications for design of offshore steel structures such as oil platform, pier, and port.
Resumo:
O objectivo deste trabalho é a produção de novos eléctrodos modificados com polioxotungstatos (POMs) do tipo Keggin, incluindo POMs lacunares e substituídos por metais de transição. A preparação e caracterização dos polioxotungstatos encontram-se descritas no Capítulo 2. No Capítulo 3 descreve-se a produção de eléctrodos de carbono vítreo funcionalizados com sais híbridos de tetra-n-butilamónio de vários silicotungstatos pelo método de evaporação da gota. As propriedades electroquímicas dos polioxotungstatos imobilizados foram comparadas com as das espécies solúveis correspondentes. A morfologia dos depósitos foi avaliada por microscopia óptica e por microscopia electrónica de varrimento. No capítulo 4 descreve-se a preparação de novos eléctrodos compósitos de carbono e poli(hexilmetacrilato) com fosfotungstatos. Os estudos electroquímicos revelaram que as principais características dos POMs são mantidas e que os processos de redução são controlados por difusão, dependendo da difusão dos protões da solução. O Capítulo 5 descreve a construção de filmes em multicamadas ultrafinos contendo POMs e polietilenimina, preparados pelo método de auto-montagem camada-sobre-camada em eléctrodos de carbono vítreo. Os filmes em multicamada foram caracterizados por voltametria cíclica e por microscopia electrónica de varrimento e foi usada a espectroscopia de absorção de UV-Vis em placas de quartzo para monitorar o crescimento de filme. Os resultados voltamétricos revelaram que os processos de redução dos POM são confinados à superfície. Alguns destes eléctrodos modificados revelaram propriedades electrocatalíticas relativamente à redução dos aniões nitrito, bromato e/ou iodato. A espectroscopia de impedância electroquímica também foi usada na caracterização destes filmes e os resultados revelaram que a resistência à transferência de carga aumenta com o aumento do número de bicamadas para ambas as espécies redox, indicando que a espessura do filme tem um efeito importante sobre a cinética de reacções de transferência de carga. No capítulo 6 descreve-se a síntese de filmes híbridos orgânicos/inorgânicos compostos por poli(3,4-etilenodioxitiofeno) (PEDOT) e por silicotungstatos do tipo Keggin através da polimerização electroquímica, em condições aquosas, na superfície de electrodos de carbono vítreo. A voltametria cíclica revelou que as características principais dos POMs são mantidas nos filmes. Verificou-se que estes filmes são muito estáveis, possivelmente devido a fortes interacções electrostáticas entre os POMs aniónicos e o polímero positivamente carregado. A espectroscopia de impedância electroquímica foi também utilizada e os resultados mostraram que a resistência de transferência de carga aumenta com o aumento do pH e para valores de potenciais mais elevados. O capítulo 7 apresenta as conclusões finais e possíveis trabalhos futuros.
Resumo:
This study focused on the development of a sensitive enzymatic biosensor for the determination of pirimicarb pesticide based on the immobilization of laccase on composite carbon paste electrodes. Multi- walled carbon nanotubes(MWCNTs)paste electrode modified by dispersion of laccase(3%,w/w) within the optimum composite matrix(60:40%,w/w,MWCNTs and paraffin binder)showed the best performance, with excellent electron transfer kinetic and catalytic effects related to the redox process of the substrate4- aminophenol. No metal or anti-interference membrane was added. Based on the inhibition of laccase activity, pirimicarb can be determined in the range 9.90 ×10- 7 to 1.15 ×10- 5 molL 1 using 4- aminophenol as substrate at the optimum pH of 5.0, with acceptable repeatability and reproducibility (relative standard deviations lower than 5%).The limit of detection obtained was 1.8 × 10-7 molL 1 (0.04 mgkg 1 on a fresh weight vegetable basis).The high activity and catalytic properties of the laccase- based biosensor are retained during ca. one month. The optimized electroanalytical protocol coupled to the QuEChERS methodology were applied to tomato and lettuce samples spiked at three levels; recoveries ranging from 91.0±0.1% to 101.0 ± 0.3% were attained. No significant effects in the pirimicarb electro- analysis were observed by the presence of pro-vitamin A, vitamins B1 and C,and glucose in the vegetable extracts. The proposed biosensor- based pesticide residue methodology fulfills all requisites to be used in implementation of food safety programs.
Resumo:
This paper presents a study of AISI 1040 steel corrosion in aqueous electrolyte of acetic acid buffer containing 3.1 and 31 x 10(-3) mol dm(-3) of Na(2)S in both the presence and absence of 3.5 wt.% NaCl. This investigation of steel corrosion was carried out using potential polarization, and open-circuit and in situ optical microscopy. The morphological analysis and classification of types of surface corrosion damage by digital image processing reveals grain boundary corrosion and shows a non-uniform sulfide film growth, which occurs preferentially over pearlitic grains through successive formation and dissolution of the film. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
One of the key objectives in fuel-cell technology is to improve the performance of the anode catalyst for the alcohol oxidation and reduce Pt loading. Here, we show the use of six different electrocatalysts synthesized by the sol -gel method on carbon powder to promote the oxidation of methanol in acid media. The catalysts Pt-PbO(x) and Pt-(RuO(2)-PbO(x)) with 10% of catalyst load exhibited significantly enhanced catalytic activity toward the methanol oxidation reaction as compared to Pt-(RuO(2))/C and Pt/C electrodes. Cyclic voltammetry studies showed that the electrocatalysts Pt-PbO(x)/C and Pt-(RuO(2)-PbO(x))/C started the oxidation process at extremely low potentials and that they represent a good novelty to oxidize methanol. Furthermore, quasi-stationary polarization experiments and cronoamperometry studies showed the good performance of the Pt-PbO(x), Pt-(RuO(2)-PbO(x))/C and Pt-(RuO(2)-IrO(2))/C catalysts during the oxidation process. Thus, the addition of metallic Pt and PbO(x) onto high-area carbon powder, by the sol -gel route, constitutes an interesting way to prepare anodes with high catalytic activity for further applications in direct methanol fuel cell systems.
Resumo:
A solid graphite-polyurethane composite electrode has been used to determine release profiles of verapamil, a calcium-channel blocker. The electro-oxidation process was characterized by cyclic voltammetry and electrochemical impedance spectroscopy and showed no adsorption of analyte or oxidation products, unlike at other carbon-based electrodes. Quantification gave linear ranges up to 40molL-1 with cyclic voltammetry and detection limits of 0.7molL-1 by differential pulse and square-wave voltammetry. Commercial product samples were successfully analyzed with results equal to those from spectrophotometry. Because no electrode surface renewal is needed, this electrode material has many advantages.
Resumo:
The production of water has become one of the most important wastes in the petroleum industry, specifically in the up stream segment. The treatment of this kind of effluents is complex and normally requires high costs. In this context, the electrochemical treatment emerges as an alternative methodology for treating the wastewaters. It employs electrochemical reactions to increase the capability and efficiency of the traditional chemical treatments for associated produced water. The use of electrochemical reactors can be effective with small changes in traditional treatments, generally not representing a significant additional surface area for new equipments (due to the high cost of square meter on offshore platforms) and also it can use almost the same equipments, in continuous or batch flow, without others high costs investments. Electrochemical treatment causes low environmental impact, because the process uses electrons as reagent and generates small amount of wastes. In this work, it was studied two types of electrochemical reactors: eletroflocculation and eletroflotation, with the aim of removing of Cu2+, Zn2+, phenol and BTEX mixture of produced water. In eletroflocculation, an electrical potential was applied to an aqueous solution containing NaCl. For this, it was used iron electrodes, which promote the dissolution of metal ions, generating Fe2+ and gases which, in appropriate pH, promote also clotting-flocculation reactions, removing Cu2+ and Zn2+. In eletroflotation, a carbon steel cathode and a DSA type anode (Ti/TiO2-RuO2-SnO2) were used in a NaCl solution. It was applied an electrical current, producing strong oxidant agents as Cl2 and HOCl, increasing the degradation rate of BTEX and phenol. Under different flow rates, the Zn2+ was removed by electrodeposition or by ZnOH formation, due the increasing of pH during the reaction. To better understand the electrochemical process, a statistical protocol factor (22) with central point was conducted to analyze the sensitivity of operating parameters on removing Zn2+ by eletroflotation, confirming that the current density affected the process negatively and the flow rate positively. For economical viability of these two electrochemical treatments, the energy consumption was calculated, taking in account the kWh given by ANEEL. The treatment cost obtained were quite attractive in comparison with the current treatments used in Rio Grande do Norte state. In addition, it could still be reduced for the case of using other alternative energy source such as solar, wind or gas generated directly from the Petrochemical Plant or offshore platforms