1000 resultados para Carbon, organic, per unit sediment mass


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During IODP Expedition 302 (Arctic Coring Expedition-ACEX), the first scientific drilling campaign in the permantly ice-covered central Arctic Ocean, a 430 m thick sequence of upper Cretaceaous to Quaternary sediments has been drilled. The lower half of this sequence is composed of organic-carbon-rich (black shale-type) sediments with total organic carbon contents of about 1-14%. Significant amounts of the organic matter preserved in these sediments is of algae-type origin and accumulated under anoxic/euxinic conditions. Here, for the first time detailed data on the source-rock potential of these black shales are presented, indicating that most of the Eocene sediments have a (fair to) good source-rock potential, prone to generate a gas/oil mixture. The source-rock potential of the Campanian and upper Paleocene sediments, on the other hand, is rather low. The presence of oil or gas already generated in situ, however, can be ruled out due to the immaturity of the ACEX sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic matter contents of black shales from the Cretaceous Hatteras and Blake-Bahama formations have been compared to those from surrounding organic-poor strata using C/N ratios, d13C values, and distributions of extractable and nonsolvent-extractable, long-chain hydrocarbons, acids, and alcohols. The proportion of marine and land-derived organic matter varies considerably among all samples, although terrigenous components generally dominate. Most black shales are hydrocarbon-poor relative to their organic-carbon concentrations. Deposition of the black shales in Hole 603B evidently occurred through turbiditic relocation from shallower landward sites and rapid reburial at this outer continental rise location under generally oxygenated bottom-water conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the light of rapidly diminishing sea ice cover in the Arctic during the present atmospheric warming, it is imperative to study the distribution of sea ice in the past in relation to rapid climate change. Here we focus on glacial millennial scale climatic events (Dansgaard/Oeschger events) using the new sea ice proxy IP25 in combination with phytoplankton proxy data and quantification of diatom species in a record from the SE Norwegian Sea. We demonstrate that expansion and retreat of sea ice varied consistently in pace with the rapid climate changes 90 ka to present, and with this present the first IP25 sea ice proxy record resolving the D/O cyclicity going back in time into Marine Isotope Stage 5a. Sea ice retreated abruptly at the start of warm interstadials, but spread rapidly during the cooling phase of the interstadials and became near-perennial and perennial during cold stadials and Heinrich events, respectively. Low salinity surface water and the sea ice edge spread to the Greenland-Scotland Ridge, and during the largest Heinrich events, probably far into the Atlantic Ocean.