729 resultados para Campylobacter fetus
Resumo:
Campylobacter est l’agent pathogène zoonotique responsable de la majorité des gastro-entérites d’origine bactérienne chez l’homme. Les produits de volaille représentent la principale source d’infection; toutefois, l’exposition peut également découler de contacts directs avec les animaux ou avec l’eau. Une forte variation saisonnière est présente dans les cas rapportés, qui n’est toujours pas élucidée : les eaux environnementales, sources d’infection connues, sont soupçonnées. Cette étude transversale a été réalisée dans la région Sud-Est du Québec (Canada) où Campylobacter fut quantifié et génotypé à partir de différentes sources d’eau (eaux de captage, récréatives et usées) et de cas cliniques afin d’évaluer les risques potentiels posé par l’eau environnementale. Différents essais PCR en temps réel furent appliqués à l’eau environnementale et comparés: 2 ont été sélectionnés pour leur spécificité et sensibilité de quantification. Les courbes standards ont été calibrées en utilisant la PCR digitale pour déterminer précisément les concentrations. Les isolats environnementaux et cliniques furent comparés génétiquement en utilisant le CGF (« comparative genomic fingerprinting »). Les eaux usées étaient plus contaminées que les eaux de captage et récréatives (3.9Log, 1.7Log et 1.0Log cellules/L en moyenne, respectivement). Six pour cent des isolats d’eaux environnementales étaient génétiquement similaires (100 % homologie) aux isolats cliniques. Les cas cliniques de campylobactériose d’été montraient des isolats avec davantage de similarités génétiques avec les isolats retrouvés dans l’eau environnementale comparativement aux autres saisons (p<0.01). Les faibles concentrations et similarités génétiques entre les isolats d’eau et cliniques suggèrent un risque de transmission possible, mais faible.
Resumo:
Background: Campylobacter jejuni is responsible for human foodborne enteritis. This bacterium is a remarkable colonizer of the chicken gut, with some strains outcompeting others for colonization. To better understand this phenomenon, the objective of this study was to extensively characterize the phenotypic performance of C. jejuni chicken strains and associate their gut colonizing ability with specific genes. Results: C. jejuni isolates (n = 45) previously analyzed for the presence of chicken colonization associated genes were further characterized for phenotypic properties influencing colonization: autoagglutination and chemotaxis as well as adhesion to and invasion of primary chicken caecal cells. This allowed strains to be ranked according to their in vitro performance. After their in vitro capacity to outcompete was demonstrated in vivo, strains were then typed by comparative genomic fingerprinting (CGF). In vitro phenotypical properties displayed a linear variability among the tested strains. Strains possessing higher scores for phenotypical properties were able to outcompete others during chicken colonization trials. When the gene content of strains was compared, some were associated with different phenotypical scores and thus with different outcompeting capacities. Use of CGF profiles showed an extensive genetic variability among the studied strains and suggested that the outcompeting capacity is not predictable by CGF profile. Conclusion: This study revealed a wide array of phenotypes present in C. jejuni strains, even though they were all recovered from chicken caecum. Each strain was classified according to its in vitro competitive potential and its capacity to compete for chicken gut colonization was associated with specific genes. This study also exposed the disparity existing between genetic typing and phenotypical behavior of C. jejuni strains.
Resumo:
Campylobacter jejuni is an important zoonotic foodborne pathogen causing acute gastroenteritis in humans. Chickens are often colonized at very high numbers by C. jejuni, up to 109 CFU per gram of caecal content, with no detrimental effects on their health. Farm control strategies are being developed to lower the C. jejuni contamination of chicken food products in an effort to reduce human campylobacteriosis incidence. It is believed that intestinal microbiome composition may affect gut colonization by such undesirable bacteria but, although the chicken microbiome is being increasingly characterized, information is lacking on the factors affecting its modulation, especially by foodborne pathogens. This study monitored the effects of C. jejuni chicken caecal colonization on the chicken microbiome in healthy chickens. It also evaluated the capacity of a feed additive to affect caecal bacterial populations and to lower C. jejuni colonization. From day-0, chickens received or not a microencapsulated feed additive and were inoculated or not with C. jejuni at 14 days of age. Fresh caecal content was harvested at 35 days of age. The caecal microbiome was characterized by real time quantitative PCR and Ion Torrent sequencing. We observed that the feed additive lowered C. jejuni caecal count by 0.7 log (p<0.05). Alpha-diversity of the caecal microbiome was not affected by C. jejuni colonization or by the feed additive. C. jejuni colonization modified the caecal beta-diversity while the feed additive did not. We observed that C. jejuni colonization was associated with an increase of Bifidobacterium and affected Clostridia and Mollicutes relative abundances. The feed additive was associated with a lower Streptococcus relative abundance. The caecal microbiome remained relatively unchanged despite high C. jejuni colonization. The feed additive was efficient in lowering C. jejuni colonization while not disturbing the caecal microbiome.
Resumo:
La campylobactériose est une zoonose causée par Campylobacter jejuni, une bactérie commensale du poulet, considérée comme la principale source de contamination humaine. C. jejuni est rarement retrouvé dans le tube digestif des poulets avant deux ou trois semaines d'âge. Ce qui pourrait s'expliquer par la transmission d'une immunité maternelle (anticorps IgY) transmise aux poussins via le jaune d'œuf. À la Chaire de recherche en Salubrité des Viandes (CRSV), la caractérisation d'anticorps IgY extraits de jaunes d'œufs frais a montré des niveaux de production d’anticorps différents selon le mode d’immunisation et suggère, in vitro, des effets sur ce pathogène. Ce qui laisse penser qu'en tant qu'additif alimentaire, une poudre de jaunes d'œuf potentialisée permettrait de lutter contre C. jejuni chez le poulet à griller. Dans ce travail, le processus de fabrication de l'additif (déshydratation par « Spray dry » puis encapsulation) a été évalué et les différents modes d'immunisation des poules pondeuses ont également été comparés. Les anticorps ont été extraits des différentes poudres de jaunes d'œuf ou du produit final encapsulé, et caractérisés in vitro (dosage / ELISA, test de mobilité, bactéricidie, western blot). Puis, une évaluation in vivo de la capacité de ces poudres encapsulées, incorporée à 5 % dans la moulée, afin de réduire ou de bloquer la colonisation intestinale des oiseaux par C. jejuni a été testée. In vitro, les résultats ont montré des concentrations d'anticorps et d'efficacité variables selon le type de vaccination. Dans cette étude, on a observé que le « Spray dry » a concentré les anticorps dans les poudres et que ces anticorps sont restés fonctionnels contre C. jejuni. On a également observé que l'encapsulation n’entraîne pas une perte quantitative des anticorps contenus dans les poudres. Malgré les résultats in vitro encourageants, les résultats in vivo ne révèlent aucune inhibition ou réduction de la colonisation des oiseaux par C. jejuni. L’absence d’efficacité la poudre de jaunes d’œuf encapsulée dans notre étude n’est pas due à une perte quantitative et/ou qualitative des anticorps comme soutenu dans les expériences in vitro. Ce qui démontre que les recherches doivent être poursuivies afin de déterminer les conditions optimales de l'utilisation de la poudre de jaune d'œuf in vivo, en tant qu'additif alimentaire chez les poulets
Resumo:
Campylobacter jejuni cause gastroenteritis in humans. The main transmission vector is the consumption or handling of contaminated chicken meat, since chicken can be colonized asymptomatically by C. jejuni. However, water has been implicated as the transmission vector in a few outbreaks. One possibility is the contamination of water effluent by C. jejuni originating from chicken farm. The ability of C. jejuni to be transmitted by water would be closely associated to its ability to survive in water. Therefore, in this study, we have evaluated the ability of reference strains and chickenisolated strains to survive in water. Defined water media were used, since the composition of tap water is variable. We showed that some isolates survive better than others in defined freshwater (Fraquil) and that the survival was affected by temperature and the concentration of NaCl. By comparing the ability of C. jejuni to survive in water with other phenotypic properties previously tested, we showed that the ability to survive in water was negatively correlated with autoagglutination. Our data showed that not all chicken isolates have the same ability to survive in water, which is probably due to difference in genetic content.
Resumo:
Logistic regression, supported by other statistical analyses was used to explore the possible association of risk factors with the fluoroquinolone (FQ)-resistance status of 108 pig finisher farms in Great Britain. The farms were classified as 'affected' or 'not affected' by FQ-resistant E. coli or Campylobacter spp. on the basis of isolation of organisms from faecal samples on media containing 1 mg/l FQ. The use of FQ was the most important factor associated with finding resistant E. coli and/or Campylobacter, which were found on 79% (FQ-resistant E. coli) and 86% (FQ-resistant Campylobacter) of farms with a history of FQ use. However, resistant bacteria were also found on 19% (FQ-resistant E. coli) and 54% (FQ-resistant Campylobacter) of farms with no history of FQ use. For FQ-resistant E. coli, biosecurity measures may be protective and there was strong seasonal variation, with more farms found affected when sampled in the summer. For FQ-resistant Campylobacter, the buying-in of grower stock may increase risk and good on-farm hygiene may be protective. The findings suggest that resistant organisms, particularly Campylobacter, may spread between pig farms.
Resumo:
Aims: To estimate the proportions of farms on which broilers, turkeys and pigs were shedding fluoroquinolone (FQ)-resistant Escherichia coli or Campylobacter spp. near to slaughter. Methods and Results: Freshly voided faeces were collected on 89 poultry and 108 pig farms and cultured with media containing 1.0 mg l(-1) ciprofloxacin. Studies demonstrated the specificity of this sensitive method, and both poultry and pig sampling yielded FQ-resistant E. coli on 60% of farms. FQ-resistant Campylobacter spp. were found on around 22% of poultry and 75% of pig farms. The majority of resistant isolates of Campylobacter (89%) and E. coli (96%) tested had minimum inhibitory concentrations for ciprofloxacin of >= 8 mg l(-1). The proportion of resistant E. coli and Campylobacter organisms within samples varied widely. Conclusions: FQ resistance is commonly present among two enteric bacterial genera prevalent on pig and poultry farms, although the low proportion of resistant organisms in many cases requires a sensitive detection technique. Significance and Impact of the Study: FQ-resistant bacteria with zoonotic potential appear to be present on a high proportion of UK pig and poultry farms. The risk this poses to consumers relative to other causes of FQ-resistant human infections remains to be clarified.
Resumo:
Batch and continuous culture anaerobic fermentation systems, inoculated with human faeces, were utilised to investigate the antimicrobial actions of two probiotics, Lactobacillus plantartan 0407, combined with oligofructose and Bifidobacterium bifidum Bb12, combined with a mixture of oligofructose and xylo-oligosaccharides (50:50 w/w) against E coli and Campylobacter jejuni. In batch fermenters, both E coli and C jejuni were inhibited by the synbiotics, even when the culture pH was maintained at around neutral. In continuous culture C jejuni was inhibited but the synbiotic failed to inhibit E coli. Although no definitive answer in addressing the mechanisms underlying antimicrobial activity was derived, results suggested that acetate and lactate directly were conferring antagonistic action, rather than as a result of lowering culture pH. In the course of the study culturing and fluorescent in situ hybridisation (FISH) methodologies for the enumeration of bacterial populations were compared. Bifidobacterial populations were underestimated using plating techniques, suggesting the non-culturability of certain bifidobacterial species. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Campylobacter jejuni NCTC 11168 does not exhibit the general increase in cellular stress resistance on entry into stationary phase that is seen in most other bacteria. This is consistent with the lack of global stationary phase regulatory elements in this organism. deduced from an analysis of its genome sequence. We now show that C. jejuni NCTC 11168 does undergo certain changes in stationary phase, of a pattern not previously described. As cells entered stationary phase there was a change in membrane fatty acid composition, principally a decrease in the proportion of unsaturated fatty acids and an increase in the content of cyclopropane and short-chain fatty acids. These changes in membrane composition were accompanied by an increase in the resilience of the cell membrane towards loss of integrity caused by pressure and an increase in cellular pressure resistance. By contrast. there were no major changes in resistance to acid or heat treatment. A similar pattern of changes in stress resistance on entry, into stationary phase was seen in C. jejuni NCTC 11351, the type strain. These changes appear to represent a restricted Physiological response to the conditions existing in stationary phase cultures, in an organism having limited capacity for genetic regulation and adaptation to environment. © 2004 Elsevier B.V. All rights reserved.
Resumo:
During the stationary phase of Campylobacter jejuni NCTC 11351 viable numbers fluctuate in a characteristic fashion. After reaching the maximum cell count (ca. 2 X 10(9) CFU/ml) in early stationary phase (denoted phase 1), viable numbers subsequently decrease to about 10(6) CFU/ml after 48 h and then increase again to about 10(8) CFU/ml (denoted phase 2) before decreasing once more to a value intermediate between the previous maximum and minimum values. To investigate whether the increase in viable numbers following the initial decline was due to the emergence of a new strain with a growth advantage in stationary phase analogous to the 'GASP' phenotype described in Escherichia coli [Science 259 (1993) 1757], we conducted mixed culture experiments with cells from the original culture and antibiotic-resistant marked organisms isolated from the re-growth phase. In many experiments of this type, strains isolated from phase 2 failed to out-compete the original strain and we have thus been unable to demonstrate a convincing GASP phenotype. However, strains isolated from phase 2 showed a much lower rate of viability loss in early stationary phase and a small increase in resistance to aeration, peroxide challenge and heat, indicating that the emergent strain was different from the parent. These results support the view that dynamic population changes occur during the stationary phase of C jejuni that may play a role in the survival of this organism. (C) 2003 Published by Elsevier B.V.
Resumo:
When Campylobacter jejuni cultures that had been grown in broth at 39degreesC were subcultured into fresh medium at 30degreesC, there was a transient period of growth followed by a decline in viable-cell numbers before growth resumed once more. We propose that this complex behavior is the net effect of the growth of inoculum cells followed by a loss of viability due to oxidative stress and the subsequent emergence of a spontaneously arising mutant population that takes over the culture.
Resumo:
Phenotypic and phylogenetic studies were performed on four Campylobacter-like organisms recovered from three seals and a porpoise. Comparative 16S rRNA gene sequencing studies demonstrated that the organisms represent a hitherto unknown subline within the genus Campylobacter, associated with a subcluster containing Campylobacter jejuni, Campylobacter coli and Campylobacter lari. DNA-DNA hybridization studies confirmed that the bacteria belonged to a single species, for which the name Campylobacter insulaenigrae sp. nov. is proposed. The type strain of Campylobacter insulaenigrae sp. nov. is NCTC 12927(T) (= CCUG 48653(T)).
Resumo:
Batch and continuous culture anaerobic fermentation systems, inoculated with human faeces, were utilised to investigate the antimicrobial actions of two probiotics, Lactobacillus plantartan 0407, combined with oligofructose and Bifidobacterium bifidum Bb12, combined with a mixture of oligofructose and xylo-oligosaccharides (50:50 w/w) against E coli and Campylobacter jejuni. In batch fermenters, both E coli and C jejuni were inhibited by the synbiotics, even when the culture pH was maintained at around neutral. In continuous culture C jejuni was inhibited but the synbiotic failed to inhibit E coli. Although no definitive answer in addressing the mechanisms underlying antimicrobial activity was derived, results suggested that acetate and lactate directly were conferring antagonistic action, rather than as a result of lowering culture pH. In the course of the study culturing and fluorescent in situ hybridisation (FISH) methodologies for the enumeration of bacterial populations were compared. Bifidobacterial populations were underestimated using plating techniques, suggesting the non-culturability of certain bifidobacterial species. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Aims: To study the development of resistance responses in Campylobacter jejuni to High Hydrostatic Pressure (HHP) treatments after the exposure to different stressful conditions that may be encountered in food processing environments, such as acid pH, elevated temperatures and cold storage. Methods and Results: C. jejuni cells in exponential and stationary growth phase were exposed to different sublethal stresses (acid, heat and cold shocks) prior to evaluate the development of resistance responses to HHP. For exponential-phase cells, neither of the conditions tested increased nor decreased HHP resistance of C. jejuni. For stationary-phase cells, acid and heat adaptation sensitized C. jejuni cells to the subsequent pressure treatment. On the contrary, cold-adapted stationary-phase cells developed resistance to HHP. Conclusions: Whereas C. jejuni can be classified as a stress sensitive microorganism, our findings have demonstrated that it can develop resistance responses under different stressing conditions. The resistance of stationary phase C. jejuni to HHP was increased after cells were exposed to cold temperatures. Significance and Impact of the Study: The results of this study contribute to a better knowledge of the physiology of C. jejuni and its survival to food preservation agents. Results here presented may help in the design of combined processes for food preservation based on HHP technology.