116 resultados para Calliphoridae
Resumo:
A Entomologia Forense é um ramo de investigação científica que aplica o estudo de insetos e outros artrópodes a procedimentos legais e está se desenvolvendo e chamando bastante atenção nos últimos anos. Diversos estudos vêm sendo realizados nesta área para que os profissionais responsáveis possuam o maior número de informações possível sobre os insetos utilizados para estes fins, permitindo-lhes assim fazer melhores análises nos casos litigiosos envolvendo a descoberta da causa até a estimativa de tempo do intervalo pós-morte (I.P.M.) em um cadáver humano. Dentro deste ramo de estudo, a ordem Diptera apresenta certo destaque por apresentar diversos insetos com hábitos necrófagos, como por exemplo a família Calliphoridae, que se destaca pela grande distribuição e número de registros da presença de seus representantes nos tecidos de corpos animais no início da decomposição. A espécie Chrysomya megacephala (Fabricius), pertencente a esta família, tendo sido introduzida acidentalmente aqui no Brasil alguns anos atrás, possui uma importância médico-sanitária como veiculadora de patógenos, eventual causadora de miíases e, pelo fato de colocar seus ovos sobre tecidos de animais em decomposição, é uma importante espécie utilizada em estudos forenses. Baseando-se em trabalhos já realizados, sabe-se que a presença de determinadas substâncias químicas no substrato alimentar das larvas destas moscas pode alterar seu desenvolvimento, e sabendo quais seriam as mudanças provocadas por uma dessas substâncias, a análise do cadáver se tornaria mais completa e confiável durante a estimativa do I.P.M. A área responsável pelo estudo da interação entre substâncias químicas e os seus efeitos nos insetos é chamada de Entomotoxicologia, que também permite detectar traços de drogas lícitas ou não no trato digestivo de insetos necrófagos... (Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
A Entomologia Forense é a ciência que aplica o estudo dos insetos, dentre outros artrópodes, a procedimentos legais, estando subdividida em três sub-áreas principais: Entomologia Urbana, Entomologia de Produtos Estocados e Entomologia Médico-Legal ou Médico-Criminal. A fauna entomológica cadavérica no Brasil apresenta uma ampla diversidade de espécies que se sucedem na carcaça, pois o processo de decomposição oferece condições ideais principalmente ao desenvolvimento dos dípteros, dentre outros insetos. A sucessão ecológica em carcaças ocorre em ondas de colonização, também denominada de sucessão ecológica de colonização de carcaças. A primeira onda, que é a mais importante para o presente estudo, inclui principalmente as moscas-varejeiras; dentre elas, merece destaque a espécie Chrysomya megacephala (Fabricius), um díptero da família Calliphoridae, que utiliza a carcaça para oviposição ou para alimentação dos adultos. Dos ovos eclodem as larvas, que se alimentam dos tecidos em decomposição, se desenvolvem e empupam no solo, nos arredores do cadáver, sendo assim possível estimar, a partir de evidências entomológicas, o tempo decorrido desde a morte até a descoberta de cadáveres humanos, ou seja, o intervalo pós-morte ou IPM, além de permitir obter informações do local onde possivelmente o crime tenha ocorrido, causa da morte, entre outros aspectos. Alguns trabalhos têm demonstrado que vários fatores podem afetar a determinação do IPM, tornando a investigação criminal mais difícil e, quando não forem levados em consideração, conduzem a erros no cálculo do IPM. Dispersão larval pós-alimentar, competição, predação, parasitismo, condições ambientais, e a presença de toxinas/drogas no corpo devem ser analisados em conjunto, de modo que erros na estimativa do IPM sejam minimizados tanto quanto possível. Deste modo, testes preliminares utilizando dietas artificiais em laboratório são...
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Artificial neural networks (ANNs) have been widely applied to the resolution of complex biological problems. An important feature of neural models is that their implementation is not precluded by the theoretical distribution shape of the data used. Frequently, the performance of ANNs over linear or non-linear regression-based statistical methods is deemed to be significantly superior if suitable sample sizes are provided, especially in multidimensional and non-linear processes. The current work was aimed at utilising three well-known neural network methods in order to evaluate whether these models would be able to provide more accurate outcomes in relation to a conventional regression method in pupal weight predictions of Chrysomya megacephala, a species of blowfly (Diptera: Calliphoridae), using larval density (i.e. the initial number of larvae), amount of available food and pupal size as input data. It was possible to notice that the neural networks yielded more accurate performances in comparison with the statistical model (multiple regression). Assessing the three types of networks utilised (Multi-layer Perceptron, Radial Basis Function and Generalised Regression Neural Network), no considerable differences between these models were detected. The superiority of these neural models over a classical statistical method represents an important fact, because more accurate models may clarify several intricate aspects concerning the nutritional ecology of blowflies.
Resumo:
The blowflies Chrysomya chloropyga (Wiedemann,1818) and Chrysomya putoria (Wiedemann, 1830) (Diptera: Calliphoridae) of veterinary and medical importance are taxonomically revised and formally reestablished as two different species. Characters in the adult morphology by which they can be distinguished, including characters in the genitalia, are described. The form with a darkened anterior margin of the wing, 'f. tacniata Bigot' sensu Zumpt 1956, is treated as a variant of C. putoria. In order to preserve stability of nomenclature, lectotypes are designated for both nominal species, fixing their identity in accordance with current usage. Somomyia cuprinitens Rondani, 1873, and Somomyia taeniata Bigot, 1877, (= C. chloropyga 'f. taeniata Bigot' of Zumpt) are considered new synonyms of C. putoria.
Resumo:
Solvent extracts of cultures of the fungus Paecilomyces varioti are toxic to sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae). Different components of the culture extracts were isolated and bioassayed with L. cuprina. The component with most toxicity was purified and identified from its proton magnetic resonance spectrum as viriditoxin, a known antibiotic metabolite of the fungus. The insecticidal properties of viriditoxin were then evaluated. Mean LCso values for first instar larvae of organophosphate susceptible and resistant strains of L. cuprina were 7.5 and 8.4 ppm respectively. Pilot implant trials in sheep demonstrated that the compound provided protection for 9-17 weeks against both strains of L. cuprina. No adverse effects on the trial sheep were detected.
Resumo:
The Old World screwworm fly (OWS), Chrysomya bezziana Villeneuve (Diptera: Calliphoridae), is a myiasis-causing blowfly of major concern for both animals and humans. Surveillance traps are used in several countries for early detection of incursions and to monitor control strategies. Examination of surveillance trap catches is time-consuming and is complicated by the presence of morphologically similar flies that are difficult to differentiate from Ch. bezziana, especially when the condition of specimens is poor. A molecular-based method to confirm or refute the presence of Ch. bezziana in trap catches would greatly simplify monitoring programmes. A species-specific real-time polymerase chain reaction (PCR) assay was designed to target the ribosomal DNA internal transcribed spacer 1 (rDNA ITS1) of Ch. bezziana. The assay uses both species-specific primers and an OWS-specific Taqman MGB probe. Specificity was confirmed against morphologically similar and related Chrysomya and Cochliomyia species. An optimal extraction protocol was developed to process trap catches of up to 1000 flies and the assay is sensitive enough to detect one Ch. bezziana in a sample of 1000 non-target species. Blind testing of 29 trap catches from Australia and Malaysia detected Ch. bezziana with 100% accuracy. The probability of detecting OWS in a trap catch of 50 000 flies when the OWS population prevalence is low (one in 1000 flies) is 63.6% for one extraction. For three extractions (3000 flies), the probability of detection increases to 95.5%. The real-time PCR assay, used in conjunction with morphology, will greatly increase screening capabilities in surveillance areas where OWS prevalence is low.
Resumo:
Muscoidea is a significant dipteran clade that includes house flies (Family Muscidae), latrine flies (F. Fannidae), dung flies (F. Scathophagidae) and root maggot flies (F. Anthomyiidae). It is comprised of approximately 7000 described species. The monophyly of the Muscoidea and the precise relationships of muscoids to the closest superfamily the Oestroidea (blow flies, flesh flies etc) are both unresolved. Until now mitochondrial (mt) genomes were available for only two of the four muscoid families precluding a thorough test of phylogenetic relationships using this data source. Here we present the first two mt genomes for the families Fanniidae (Euryomma sp.) (family Fanniidae) and Anthomyiidae (Delia platura (Meigen, 1826)). We also conducted phylogenetic analyses containing of these newly sequenced mt genomes plus 15 other species representative of dipteran diversity to address the internal relationship of Muscoidea and its systematic position. Both maximum-likelihood and Bayesian analyses suggested that Muscoidea was not a monophyletic group with the relationship: (Fanniidae + Muscidae) + ((Anthomyiidae + Scathophagidae) + (Calliphoridae + Sarcophagidae)), supported by the majority of analysed datasets. This also infers that Oestroidea was paraphyletic in the majority of analyses. Divergence time estimation suggested that the earliest split within the Calyptratae, separating (Tachinidae + Oestridae) from the remaining families, occurred in the Early Eocene. The main divergence within the paraphyletic muscoidea grade was between Fanniidae + Muscidae and the lineage ((Anthomyiidae + Scathophagidae) + (Calliphoridae + Sarcophagidae)) which occurred in the Late Eocene
Resumo:
Blowflies are insects of forensic interest as they may indicate characteristics of the environment where a body has been laying prior to the discovery. In order to estimate changes in community related to landscape and to assess if blowfly species can be used as indicators of the landscape where a corpse has been decaying, we studied the blowfly community and how it is affected by landscape in a 7,000 km(2) region during a whole year. Using baited traps deployed monthly we collected 28,507 individuals of 10 calliphorid species, 7 of them well represented and distributed in the study area. Multiple Analysis of Variance found changes in abundance between seasons in the 7 analyzed species, and changes related to land use in 4 of them (Calliphora vomitoria, Lucilia ampullacea, L. caesar and L. illustris). Generalised Linear Model analyses of abundance of these species compared with landscape descriptors at different scales found only a clear significant relationship between summer abundance of C. vomitoria and distance to urban areas and degree of urbanisation. This relationship explained more deviance when considering the landscape composition at larger geographical scales (up to 2,500 m around sampling site). For the other species, no clear relationship between land uses and abundance was found, and therefore observed changes in their abundance patterns could be the result of other variables, probably small changes in temperature. Our results suggest that blowfly community composition cannot be used to infer in what kind of landscape a corpse has decayed, at least in highly fragmented habitats, the only exception being the summer abundance of C. vomitoria.
Resumo:
从空间、时间、食物3个方面研究了若尔盖湿地3种两栖类的种间竞争,运用生态位理论探讨了3种两栖类利用环境资源的能力以及它们之间的共存模式,研究了3种两栖类年周期食性,并考察了畜牧业对3种两栖类食性及食物竞争格局的影响;此外,还通过实验室研究对2种两栖类幼体的种间竞争策略进行了考察。主要结果如下: 1、两栖类的空间资源利用状况:在3种两栖类成体生态位宽度的比较中,岷山蟾蜍(Bufo minshanicus)成体在牧场性质(0.41)、牛粪数量(0.42)、植被盖度(0.20)、地表温度(0.50)、地表湿度(0.51) 5个维度上的生态位宽度最窄;而倭蛙(Nanorana pleskei)成体在牛粪数量(0.81)、植被高度(0.63)、植被盖度(0.47)、小水体距离(0.68) 4个维度上的生态位宽度最宽。在3种两栖类亚成体生态位宽度的比较中,岷山蟾蜍亚成体在牧场性质(0.66)、牛粪数量(0.58)、植被高度(0.64)、小水体距离(0.51)、地表湿度(0.79) 5个维度的上生态位宽度最宽;倭蛙亚成体在牧场性质(0.39)、牛粪数量(0.30)、地表温度(0.18)、地表湿度(0.33) 4个维度上的生态位宽度最窄。高原林蛙(Rana kukunoris)在地表温度(成体:0.62;亚成体:0.56)、地表湿度(成体:0.84;亚成体:0.60)两个维度上具有较大的生态位宽度值,而在小水体距离维度上(成体:0.27;亚成体:0.14)的生态位宽度值则很小。比较3种无尾两栖类在不同生长阶段(成体、亚成体)的生态位宽度,发现高原林蛙和倭蛙的亚成体对栖息环境的要求更高。3种两栖类空间资源利用的相似程度很高,高原林蛙与倭蛙之间的生态重叠度(0.87)较之它与岷山蟾蜍(0.81)的生态位重叠度更大。 2、两栖类的日活动节律:高原林蛙成体、亚成体、岷山蟾蜍亚成体活动的最低气温为0℃、2℃、8℃;岷山蟾蜍和高原林蛙亚成体出现的数量与气温成极显著的正相关(r=0.797, p<0.001;r=0.794, p<0.001),高原林蛙成体出现的数量与气温有一定相关性(r=0.456, p<0.05);晴天时两栖类的活动性明显高于阴天(p<0.001);多云转晴天气,高原林蛙和岷山蟾蜍亚成体出现两次日活动高峰,分别为中午12:30左右和下午15:30~16:30之间;多云天气,高原林蛙和岷山蟾蜍亚成体出现两次日活动高峰,分别为9:30~10:30之间和15:30~16:30之间。 3、两栖类的食物资源利用状况:春、秋两季,高原林蛙最主要的食物是蜉金龟科(Aphodiidae)昆虫,相对重要性指数(IRI)最高(春季:35.28%,秋季:28.57%),其次为昆虫的幼虫,以及双翅目的毛蚊科(Bibionidae)、蝇科(Muscidae)、丽蝇科(Calliphoridae)昆虫,秋季,蝗虫是高原林蛙食物组成中的重要部分;岷山蟾蜍最主要的食物是蚂蚁(IRI,春季:85.54%,秋季:49.70%),其次为蜉金龟科、象甲科(Curculionidae)、步甲科(Carabidae)、粪金龟科(Geotrupidae) 等鞘翅目昆虫;倭蛙春季的最主要食物也是蜉金龟科昆虫(IRI,春季:13.41%),其次为蚂蚁、毛蚊科昆虫、昆虫的幼虫以及狼蛛科(Lycosidae)。3种两栖类中,倭蛙的食性生态位宽度相对较宽(0.43),而岷山蟾蜍(0.09)和高原林蛙(0.22)的生态位宽度较窄,与春季相比,两栖类在秋季的食谱更宽。以利用食物种类为标准,春季高原林蛙与倭蛙的生态位重叠度(0.40)比它与岷山蟾蜍的生态位重叠度(0.33)更大。 4、畜牧业对两栖类食性及食物竞争格局的影响:以藏牦牛粪为食物或寄居场所的昆虫,如蜉金龟科、粪金龟科、毛蚊科、蝇科、丽蝇科昆虫和某些昆虫幼虫,是3种两栖类食物谱中最主要的组成部分,蜉金龟科昆虫在高原林蛙食谱中的比例更高,高原林蛙可能从畜牧业发展中获得更多的好处,使之在食物竞争方面处于优势地位。与无放牧样地相比,在有放牧样地的中,两栖类食谱中的蜉金龟科昆虫数量更多(有放牧:31.94%;无放牧:21.32%)、出现频率更高(有放牧:76.38%;无放牧:44%)。然而在不同样地上(有放牧/无放牧),两栖类的食物组成无显著性差异(P=0.188),两栖类的数量(P=0.075)、肥满度(P=0.537)均没有显著差别。 5、两栖类幼体的竞争策略:实验室条件下,通过活动性水平,变态时的体重、增长率和完成变态所需时间考察自然条件下常同水塘分布的中华蟾蜍(Bufo gargarizans)和高原林蛙蝌蚪的竞争策略。结果表明:中华蟾蜍蝌蚪在不同食物资源条件下,所选择的生存策略可能不同,即食物资源充足时,增加活动性获取更多食物,食物资源有限时,降低活动性且提前完成变态;与中华蟾蜍蝌蚪相比,在食物资源有限时高原林蛙蝌蚪获取食物能力可能更强。 This paper presented the study of competition of three amphibians (Rana kukunoris, Nanorana pleskei, Bufo minshanicus) based on spatial, temporal and dietary scales in Zoige wetland. We measured coexistence patterns of three amphibians and analyzed their ability of exploiting resource. Effects of grazing on the diet composition and diet competition of amphibians were analyzed by their diet composition during spring and autumn. Furthermore, we examined the competitive ability of larval common frogs (Rana kukunoris)and common toads(Bufo gargarizans) in a laboratory experiment, and analyzed their competitive strategies respectively. The results were as follows: 1 .The status of using spatial resource Niche breadths of B. minshanicus adults on 5 dimensional axes including character of pasture(0.41), number of yaks dung(0.42), vegetation coverage(0.20), temperature (0.50)and humidity(0.51) of ground surface were narrower than adults of R. kukunoris and N. pleskei. Niche breadths of B. minshanicus subadults were broader than R.kukunoris subadults and N.pleskei subadults on 5 dimensional axes including character of pasture (0.66), number of yaks dung (0.58), vegetation height (0.64), distance to small waterbodies (0.51), humidity of ground surface (0.79). Niche breadths of N. pleskei subadults were the narrowest in three anurans subadults on 4 dimensional axes including character of pasture (0.39), number of yaks dung (0.30), temperature (0.18) and humidity (0.33) of ground surface, niche breadths of N. pleskei adults were the broadest in three anurans adults on 4 dimensional axes including number of yaks dung (0.81), vegetation height (0.63) and coverage(0.47), distance to small waterbodies(0.68).Comparatively, niche breadths of R. kukunoris were broader on the two microclimate factors including temperature(adults:0.62;subadults:0.56) and humidity (adults:0.84;subadults:0.60)of ground surface, but was narrow on distance to small waterbodies(adults:0.27;subadults:0.14). Strategies for using habitat resource of adults and subadults of the three species anuran were different. Generally, subadults of R. kukunoris and N. pleskei needs better habitat condition. It was quite similar that three anurans exploited spatial resource, Niche overlap between R. kukunoris and N. pleskei (0.87) was greater than that between R. kukunoris and B.minshanicus(0.81). 2.Daily activity rhythm R. kukunoris audlts were active when air temperatures were as low as 0℃, R. kukunoris subadults were active at 2℃, B.minshanicus subaudlts were active at 8℃. Positive correlation was found between activities of amphibians and air temperature, Subadults of R.kukunoris, (r=0.797, p<0.001), Subadults,of,B.minshanicus, (r=0.794, p<0.001), andbadults,of,R.kukunoris(r=0.456, p<0.05).Amphibians were more active during sunny days than cloudy days. In cloudy turning into sunny, R. kukunoris and B.minshanicus subadults had two active peak: at noon about 12:30 and 15:30~16:30 pm; in cloudy, R. kukunoris and B.minshanicus subadult had two active peak too : 9:30~10:30am,15:30~16:30pm. 3.Diet analysis Aphodiidae was the most commonly consumed food item by R. kukunoris based on index of relative importance (IRI) during spring (35.28%) and autumn (28.57%) in Zogie wetland. Besides Aphodiidae, larval insect, dipterans such as Bibionidae, Muscidae, Calliphoridae also were important food item for R. kukunoris, in autumn, locust was one of important food item for R. kukunoris. The most important food item for B.minshanicus during spring (IRI:85.54%) and autumn (IRI:49.70%) was ants, following, was coleopterans, such as Aphodiidae, dung beetle. Aphodiidae (IRI:13.41%) were the most important consumed food item by N. pleskei during spring too, following, was ants and Bibionidae. Dietary breadth of N. pleskei (0.43) were greater than R. kukunoris (0.22) and B. minshanicus (0.09). As a whole, Dietary breadth of amphibians during aurumn were greater than spring. Based on prey item, dietary overlap between R. kukunoris and N. pleskei (0.40) was greater than that between R. kukunoris and B.minshanicus (0.33) during spring. 4.Effects of grazing on the diet composition and diet competition of amphibians Amphibians are an important part of the pasture ecosystems as prey and predator. In Zogie wetland, major diet of amphibians was closely associated with dung of yaks, for example, Aphodiidae, Bibionidae, Muscidae, dung beetle. Dung of yaks was major diet and habitat of these insects. Proportion of Aphodiidae was higher in diet composition of R. kukunoris than N. pleskei and B.minshanicus, with development of pasturage, R. kukunoris may have a diet competitive advantage over N. pleskei and B.minshanicus. Number of Aphodiidae in diet composition of amphibians was higher in samples with grazing (31.94%) than in those without grazing (21.32%). Occurrence Frequency of Aphodiidae in diet composition of amphibians was higher in samples with grazing (76.38%) than in those without grazing (44%). However, There was not significantly different on diet composition (P=0.188), and number (P=0.075) and the relative fatness (P=0.537) of amphibians between grazing samples and without grazing. 5.Competitive strategies of amphibian larvae I examined the competitive ability of larval toads (Bufo gargarizans) and frogs (Rana kukunoris) which co-occur in the nature pond by activity level, the growth rate and mass at metamorphosis and larval period in a laboratory experiment. The results suggest: In laborary, B.gargarizans adapted himself to different food level by changing activity. At high food level, B. gargarizans increased activity to gain more diet. At low food level, B. gargarizans decreased activity and achieved early metamorphosis. When food resource was limit, R. kukunoris could gain more food than B. gargarizans.
Resumo:
The toxicity of tetrahydrofuran lignan grandisin was evaluated against larvae of Chrysomya megacephala F. (Diptera: Calliphoridae). The bioassay involved topical treatment on larvae, topical treatment oil egg masses, and incorporation in the larval diet. Grandisin showed inhibition of postembryonic development by ovicidal (30%) and larvicidal (38%) effects and reduced larval weight (4 mg), when topically applied oil egg masses and starving larvae (L1) at a concentration of 100 mu g/mu l. These findings elucidated the effect of grandisin on the C. megacephala life cycle and its potential to control C. megacephala populations.
Resumo:
Chrysomya albiceps (Diptera: Calliphoridae) é uma predadora facultativa sobre outras moscas-varejeiras, durante o terceiro instar larval. Nesse estudo, nos investigamos a taxa de predação de C. albiceps sobre larvas de primeiro, segundo e terceiro instar de C. megacephala e C. macellaria comparando a vulnerabilidade dos instares larvais frente à predadora. Para as presas de primeiro e segundo instar, C. albiceps apresentou maior taxa de predação sobre C. megacephala. Já sobre larvas de terceiro instar a predadora consumiu mais C. macellaria. O comportamento de C. albiceps sobre as duas espécies de presas sugere uma mudança na estratégia de forrageio da predadora e essa mudança pode ter influencia sobre a comunidade de dípteros necrófagos.
Resumo:
The decomposition of small carcasses in the open is frequently neglected although it may provide information of forensic importance. This paper describes an experimental study of arthropod species associated with carcasses of mouse, Mus musculus (Linnaeus, 1758) and rat, Rattus norvegicus (Berkenhout, 1769) (Rodentia: Muridae). Four carcasses were left inside iron cages in sunlit and shady areas in a secondary forest in Southeastern Brazil twice a season for four seasons (n = 16 carcasses of each rodent). The carcasses were removed when arthropods ceased to visit them. The visiting and colonizing invertebrates were collected daily and identified. Immatures were also collected and reared in a laboratory for identification. We collected 6,514 arthropods (820 adults and 5,694 juvenile forms) belonging to 53 species from the families Sarcophagidae, Calliphoridae, Muscidae, Fanniidae, Syrphidae, Richardiidae, Sepsidae, Micropezidae, Otitidae, Drosophilidae, Phoridae, Dolichopodidae, Anthomyiidae, Asilidae and Lauxaniidae (Diptera), Formicidae, Ichneumonidae, Encyrtidae and Apidae (Hymenoptera), Staphylinidae (Coleoptera) and Gonyleptidae (Opiliones). Lucilia eximia (Wiedemann, 1819) (Diptera: Calliphoridae) and Peckia (Pattonella) intermutans (Walker, 1861) (Diptera: Sarcophagidae) deserve special attention because both adult and immature forms were collected in all seasons and in both areas. Our results indicate that the frequency of occurrence of these arthropods was positively associated with carcass size (mouse or rat); no marked insect succession on the carcasses occurred; and the diversity of Calliphoridae and Sarcophagidae was high, irrespective of season.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)