962 resultados para CYTOPLASMIC MATURATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The whole-cell voltage clamp technique was used to record potassium currents in mouse fetal hypothalamic neurons developing in culture medium from days 1 to 17. The neurons were derived from fetuses of IOPS/OF1 mice on the 14th day of gestation. The mature neurons (>six days in culture) showed both a transient potassium current and a non-inactivating delayed rectifier potassium current. These were identified pharmacologically by using the potassium channel blockers tetraethyl ammonium chloride and 4-aminopyridine, and on the basis of their kinetics and voltage sensitivities. The delayed rectifier potassium current had a threshold of −20 mV, a slow time-course of activation, and was sustained during the voltage pulse. The 4-aminopyridine-sensitive current was transient, and was activated from a holding potential more negative (−80 mV) than that required for evoking the delayed rectifier potassium current (−40 mV). The delayed rectifier potassium current was detectable from day 1 onwards, while the transient potassium current showed a distinct developmental trend. The time-constant of inactivation became faster with age in culture. The half steady-state inactivation potential showed a shift towards less negative membrane potentials with age, and the relationship was best described by a logarithmic regression equation.The developmental trend of the transient potassium current may relate functionally to the progressive morphological changes, and the appearance of synaptic connections during ontogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, an etiological agent of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Pathogenic mycobacteria survive in the host by subverting host innate immunity. Dendritic cells (DCs) are professional antigen-presenting cells that are vital for eliciting immune responses to infectious agents, including pathogenic mycobacteria. DCs orchestrate distinct Th responses based on the signals they receive. In this perspective, deciphering the interactions of the proline-glutamic acid/proline-proline-glutamic acid (PE/PPE) family of proteins of M. tuberculosis with DCs assumes significant pathophysiological attributes. In this study, we demonstrate that Rv1917c (PPE34), a representative member of the proline-proline-glutamic-major polymorphic tandem repeat family, interacts with TLR2 and triggers functional maturation of human DCs. Signaling perturbations implicated a critical role for integrated cross-talk among PI3K-MAPK and NF-kappa B signaling cascades in Rv1917c-induced maturation of DCs. However, this maturation of DCs was associated with a secretion of high amounts of anti-inflammatory cytokine IL-10, whereas Th1-polarizing cytokine IL-12 was not induced. Consistent with these results, Rv1917c-matured DCs favored secretion of IL-4, IL-5, and IL-10 from CD4(+) T cells and contributed to Th2-skewed cytokine balance ex vivo in healthy individuals and in patients with pulmonary tuberculosis. Interestingly, the Rv1917c-skewed Th2 immune response involved induced expression of cyclooxygenase-2 (COX-2) in DCs. Taken together, these results indicate that Rv1917c facilitates a shift in the ensuing immunity toward the Th2 phenotype and could aid in immune evasion by mycobacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dexamethasone has a potentiating effect on phenobarbitone mediated induction of cytochrome P-450b + e mRNAs in adult rat liver. However, the glucocorticoid inhibits phenobarbitone-activated transcription of cytochrome P-450b + e mRNAs by 60-70%. This inhibitory effect is evident in run-off transcription of the endogenous genes as well as in the transcription of an added cloned gene fragment. Dexamethasone inhibits the phenobarbitone-mediated increase in the binding of a transcription factor(s) to the upstream region of the gene as evidenced by gel retardation and Southwestern blot analysis. The glucocorticoid does not stabilize the phenobarbitone-induced polyribosomal cytochrome P-450b + e mRNAs but appears to stabilize the nuclear transcripts. It is proposed that a negative element may mediate the action of dexamethasone at the level of nuclear transcription and stabilization of the nuclear transcript may account for the potentiating effect of the glucocorticoid on phenobarbitone-mediated increase in cytochrome P-450b + e mRNAs in the cytoplasm of the adult rat liver. However, the cytochrome P-450b protein levels are slightly lower in phenobarbitone + dexamethasone treatment than in phenobarbitone-treated liver microsomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the endocrine role of oestrogen is well established, its function in follicular maturation as an autocrine or paracrine regulator is less well understood. This study was designed to delineate the requirement of oestrogen for follicular development in immature rats. Exogenous gonadotrophin (25 IU pregnant mare serum gonadotrophin (PMSG) per rat) was administered to 21- to 23-day old female rats to induce follicular growth and development. In the experimental animals, synthesis of oestrogen was blocked by implanting an Alzet pump containing the aromatase inhibitor (AI) CGS 16949A (fadrozole hydrochloride; 50 mu g/rat per day). The treatment resulted in blockade of the PMSG induced increase in both serum and intrafollicular oestrogen (>95%), thus leading to an inhibition in uterine weight increment. Compared with the controls, ovarian weight increased markedly in both the PMSG (295%)- and PMSG+AI (216%)-primed animals. There was no significant difference in either the proliferative capabilities of the ovarian granulosa cells or their responsiveness to human chorionic gonadotrophin (hCG; 200 pg/ml) and ovine FSH (20 ng/ml) between the PMSG- and PMSG+AI-treated groups. Histological examination of the ovary, however, indicated a decrease in the number of healthy antral follicles in the Al-treated group compared with the PMSG-primed animals but both the groups showed a percentage increase over the controls (PMSG, 225; PMSG+AI, 158). The responsiveness of the animals to an ovulatory dose of hCG was drastically reduced (>80% inhibition of ovulation) in the oestrogen-deprived animals; this could be overriden by exogenous administration of oestrogen. In conclusion, although blocking oestrogen synthesis in the PMSG-primed rat does not seem to alter the functional properties of the isolated granulosa cells in vitro there appears to be an effect on the number of follicles which complete maturation and are able to ovulate in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific role of oestrogen in follicular maturation, ovulation and early embryonic development was investigated using Fadrozole (CGS 16949A), a non-steroidal aromatase inhibitor, to block oestrogen synthesis specifically and effectively in experimental animals. Induced and normal cyclical follicular maturation as well as normal and hCG/LH-induced ovulation were relatively unaffected by significantly depleting oestrogen in all animals (hamsters, rabbits, monkeys) studied other than rats. Fadrozole treatment significantly reduced the number of healthy antral follicles produced and the ovulatory response to exogenous hCG of immature rats primed with pregnant mares' serum gonadotrophin. The effect was specific, in that exogenously administered oestrogen reversed the blockade. Depletion of oestrogen, starting early in pro-oestrus in hamsters, had no effect on ovulation, oocyte maturation and fertilization, as normal implantation sites were seen on day 6 after coitus. In rabbits, oestrogen depletion during the periovulatory phase affected oviductal morphology and function. Although fertilization was not impaired, early embryo development did not appear to be normal. In monkeys, oestrogen depletion during the follicular phase did not lead to a block of follicular maturation or ovulation but resulted in a significant reduction in secretion of cervical mucus. Administration of either Fadrozole or Tamoxifen during the early luteal phase in cyclic monkeys that were allowed to mate prevented implantation and this appears to be due to impaired fertilization or faulty embryo development. These results suggest that, although there is a clear requirement for oestrogen to support the reproductive cycle in the female, the need for oestrogen in regulating specific events is species dependent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study focusses attention on the effects of blocking estrogen synthesis, during follicular phase, on follicular maturation in the adult female bonnet monkey (Macaca radiata). Administration of cycling females (n = 4) with an aromatase inhibitor CGS 16949A (AI) by Alzet mini-pump (2.5 mg/day) from day 3 of cycle resulted in significant reduction in basal (by 53%) and surge levels of estrogen (by 70%) but this had no effect on follicular maturation, ovulation and luteal function as assessed by serum hormone profiles as well as laparotomy. This lack of need for estrogen for completion of follicular maturation process was confirmed by administering cycling monkeys hFSH (25 IU/day) from day 3 till day 8 of the cycle along with (5 mg AI/day) or without Al (n = 3/group). Administration of Al resulted in suppression of FSH induced increase in serum estrogen (by 100%) and elevation in circulating androstenedione. Aromatase inhibitor treatment had no effect on either the number of follicles developed or their size relative to control. Testing the ability of both granulosa and thecal cells, removed on day 9 of treatment cycle, to respond to gonadotropins in vitro showed no change indicating that cellular development and maturation of follicular cells had occurred normally. It is concluded that follicular maturation in the primate can occur even when increase in estrogen synthesis is blocked.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant organs are initiated as primordial outgrowths, and require controlled cell division and differentiation to achieve their final size and shape. Superimposed on this is another developmental program that orchestrates the switch from vegetative to reproductive to senescence stages in the life cycle. These require sequential function of heterochronic regulators. Little is known regarding the coordination between organ and organismal growth in plants. The TCP gene family encodes transcription factors that control diverse developmental traits, and a subgroup of class II TCP genes regulate leaf morphogenesis. Absence of these genes results in large, crinkly leaves due to excess division, mainly at margins. It has been suggested that these class II TCPs modulate the spatio-temporal control of differentiation in a growing leaf, rather than regulating cell proliferation per se. However, the link between class II TCP action and cell growth has not been established. As loss-of-function mutants of individual TCP genes in Arabidopsis are not very informative due to gene redundancy, we generated a transgenic line that expressed a hyper-activated form of TCP4 in its endogenous expression domain. This resulted in premature onset of maturation and decreased cell proliferation, leading to much smaller leaves, with cup-shaped lamina in extreme cases. Further, the transgenic line initiated leaves faster than wild-type and underwent precocious reproductive maturation due to a shortened adult vegetative phase. Early senescence and severe fertility defects were also observed. Thus, hyper-activation of TCP4 revealed its role in determining the timing of crucial developmental events, both at the organ and organism level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic cells (DCs) as sentinels of the immune system are important for eliciting both primary and secondary immune responses to a plethora of microbial pathogens. Cooperative stimulation of a complex set of pattern-recognition receptors, including TLR2 and nucleotide-binding oligomerization domain (NOD)-like receptors on DCs, acts as a rate-limiting factor in determining the initiation and mounting of the robust immune response. It underscores the need for ``decoding'' these multiple receptor interactions. In this study, we demonstrate that TLR2 and NOD receptors cooperatively regulate functional maturation of human DCs. Intriguingly, synergistic stimulation of TLR2 and NOD receptors renders enhanced refractoriness to TGF-beta- or CTLA-4-mediated impairment of human DC maturation. Signaling perturbation data suggest that NOTCH1-PI3K signaling dynamics assume critical importance in TLR2- and NOD receptor-mediated surmounting of CTLA-4- and TGF-beta -suppressed maturation of human DCs. Interestingly, the NOTCH1-PI3K signaling axis holds the capacity to regulate DC functions by virtue of PKC delta-MAPK-dependent activation of NF-kappa B. This study provides mechanistic and functional insights into TLR2-and NOD receptor-mediated regulation of DC functions and unravels NOTCH1-PI3K as a signaling cohort for TLR2 and NOD receptors. These findings serve in building a conceptual foundation for the design of improved strategies for adjuvants and immunotherapies against infectious diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boswellia papyrifera and Boswellia carterii diffuses smoke polluting air that adversely affects indoor environment that certainly harm human health. Therefore, this study aims at ascertaining the effect of these plants on gonadal hormones and molecular changes in rat spermatozoa. The animals were exposed to 4 g/kg body weight of B. papyrifera and B. carterii daily for 120 days along with suitable controls. Significant decreases in FSH, LH and testosterone levels were evidenced, along with a reduction of protein, sialic acid, and carnitine levels. In sperm physiology, sperm count, motility, speed decrease, whereas sperm anomalies increase. TEM observation indicates morphological changes in plasma and acrosomal membranes, cytoplasmic droplet in the tail region, vacuolated, and disorganization of the mitochondrial sheath. These findings demonstrate that B. papyrifera and B. carterii smoke affects the process of sperm formation and maturation, which indicates the detrimental effects of these plants on the reproductive system. (c) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.d

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery of microRNAs (miRNAs) has added a new dimension to the gene regulatory networks, making aberrantly expressed miRNAs as therapeutically important targets. Small molecules that can selectively target and modulate miRNA levels can thus serve as lead structures. Cationic cyclic peptides containing sugar amino acids represent a new class of small molecules that can target miRNA selectively. Upon treatment of these small molecules in breast cancer cell line, we profiled 96 therapeutically important miRNAs associated with cancer and observed that these peptides can selectively target paralogous miRNAs of the same seed family. This selective inhibition is of prime significance in cases when miRNAs of the same family have tissue-specific expression and perform different functions. During these conditions, targeting an entire miRNA family could lead to undesired adverse effects. The selective targeting is attributable to the difference in the three-dimensional structures of precursor miRNAs. Hence, the core structure of these peptides can be used as a scaffold for designing more potent inhibitors of miRNA maturation and hence function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Size regulation of human cell nucleus and nucleolus are poorly understood subjects. 3D reconstruction of live image shows that the karyoplasmic ratio (KR) increases by 30-80% in transformed cell lines compared to their immortalized counterpart. The attenuation of nucleo-cytoplasmic transport causes the KR value to increase by 30-50% in immortalized cell lines. Nucleolus volumes are significantly increased in transformed cell lines and the attenuation of nucleo-cytoplasmic transport causes a significant increase in the nucleolus volume of immortalized cell lines. A cytosol and nuclear fraction swapping experiment emphasizes the potential role of unknown cytosolic factors in nuclear and nucleolar size regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent emphasis on ecosystem approaches to fisheries management renews interest in, and the need for, trophic information about fish communities. A program was started in 1980 at the National Marine Fisheries Service Galveston Laboratory to develop a trophic database for continental shelf fishes. Collections were made during 1982-1983 that were processed but never published, yet the data remain valid today for historical purposes and for delimiting food web components within ecosystem assessments. I examined spring, summer, and fall foods in offshore populations of nine common species of trawl-susceptible fishes, with particular reference to predation on commercial penaeid shrimps (Farfantepenaeus and Litopenaeus). Diets were evaluated with the Index of Relative Importance (IRI) which combines the occurrence, number, and weight of each food item. Bank sea bass (Centropristis ocyurus) and bighead searobin (Prionotus tribulus) primarily consumed crabs, more so by larger than smaller fish. Inshore lizardfish (Synodus foetens) was almost entirely piscivorous. Ocellated flounder (Ancylopsetta ommata) consumed fishes, crabs, and stomatopods. Dwarf sand perch (Diplectrum bivittatum), blackwing searobin (Prionotus rubio), rock sea bass (Centropristis philadelphica), southern kingfish (Menticirrhus americanus), and red snapper (Lutjanus campechanus) fed mainly on shrimps. Most fish diets varied with respect to size (age), time of day, area sampled, depth, or season. Rimapenaeus and Sicyonia were the most frequently identified shrimp genera - only five Farfantepenaeus and no Litopenaeus were identified in almost 4,300 fish stomachs. I also examined gonadal development and documented fish length-weight relationships. Ripe gonads were most frequently found during summer in dwarf sand perch, during fall in ocellated flounder and bighead searobin, and during spring for other species, except no ripe red snapper or bank sea bass were collected. Rock sea bass was found to be a protogynous hermaphrodite, while dwarf sand perch is a synchronous hermaphrodite. Only ocellated flounder and southern kingfish exhibited sex-related differences in length-weight relationships. (PDF contains 40 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observations on maturation stages of nineteen species of economically important finfish off the Northeast coast of the USA were analyzed to examine relationships between fish size or age, and maturity. Maturation schedules and median lengths (L50) and ages (A50) at maturation were derived by fitting the logistic model to the observed proportions. Analyses were generally restricted to observations from 1985 to 1990 obtained during stratified random bottom trawl surveys conducted in spring and autumn by the Northeast Fisheries Science Center and the Commonwealth of Massachusetts Division of Marine Fisheries in waters of the continental shelf from Nova Scotia to Cape Hatteras, North Carolina. Butterfish, Peprilus triacanthus, attained sexual maturity at the smallest median length (11.4 cm, males) and pollock, Pollachius virens, at the highest (41.8 em, males). Median length at maturity for gadiforms ranged from 22.2 to 41.8 em. Within the pleuronectiforms, median length at maturity ranged from 19.1 to 30.4 cm. Median lengths for the pelagic and miscellaneous demersal species were in the same ranges as the pleuronectiforms. Butterfish also attained sexual maturity at the youngest median age (0.9 yr, both sexes) whereas redfish, Sebastes fasciatus, were the latest to mature (5.5 yr, both sexes). For gadids, the median age at maturity ranged from 1.3 to 2.3 yr. Within the pleuronectiforms, median age at maturity ranged from 1.3 to 4.4 yr and, for pelagic species, from 0.9 to 3.0 yr. Median lengths and ages for many species are lower than those reported in earlier studies of the same general region of the Northwest Atlantic. (PDF file contains 72 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The United States and Japanese counterpart panels on aquaculture were formed in 1969 under the United States-Japan Cooperative Program in Natural Resources (UJNR). The panels currently include specialists drawn from the federal departments most concerned with aquaculture. Charged with exploring and developing bilateral cooperation, the panels have focused their efforts on exchanging information related to aquaculture which could be of benefit to both countries. The UJNR was begun during the Third Cabinet-Level Meeting of the Joint United States-Japan Committee on Trade and Economic Affairs in January 1964. In addition to aquaculture, current subjects in the program include desalination of seawater, toxic microorganisms, air pollution, energy, forage crops, national park management, mycoplasmosis, wind and seismic effects, protein resources, forestry, and several joint panels and committees in marine resources research, development, and utilization. Accomplishments include: Increased communication and cooperation among technical specialists; exchanges of information, data, and research findings; annual meetings of the panels, a policy-coordinative body; administrative staff meetings; exchanges of equipment, materials, and samples; several major technical conferences; and beneficial effects on international relations. (PDF file contains 79 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effectiveness of 17 α-hydroxy-20 β-dihydroprogesterone (17 α-20 β Pg) or of a trout hypophyseal gonadotrophic extract on the in vitro intrafollicular maturation of trout oocytes can be modulated by steroids which do not have a direct maturing effect; the effectiveness of the gonadotrophic extract is lowered by oestradiol and oestrone and increased by testosterone. As these steroids have no significant effect on maturation induced by 17 α-20 β Pg, the site of their activity is probably in the follicular envelopes. Corticosteroids, and Cortisol and cortisone in particular increase the effectiveness of the gonadotrophic extract, but increase the effectiveness of 17 α-20 β Pg even more strongly, suggesting that this 'progestagen' has a direct effect on oocyte sensitivity.