857 resultados para CYCLIST, ENDURANCE PERFORMANCE, OXYGEN UPTAKE, SHORTTERM
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this study was to analyze the effect of two different high-intensity interval training (HIT) programs on selected aerobic physiological indices and 1500 and 5000 m running performance in well-trained runners. The following tests were completed (n = 17): (i) incremental treadmill test to determine maximal oxygen uptake (VO2max), running velocity associated with VO2 max (VVO2max), and the velocity corresponding to 3.5 mmol/L of blood lactate concentration (vOBLA); (ii) submaximal constant-intensity test to determine running economy (RE); and (iii) 1500 and 5000 m time trials on a 400 m track. Runners were then randomized into 95% vVO(2max) or 100% vVO(2max) groups, and undertook a 4 week training program consisting of 2 HIT sessions (performed at 95% or 100% vVO(2max), respectively) and 4 submaximal run sessions per week. Runners were retested on all parameters at the completion of the training program. The VO2 max values were not different after training for both groups. There was a significant increase in post-training vVO(2 max), RE, and 1500 in running performance in the 100% vVO(2 max) group. The vOBLA and 5000 m running performance were significantly higher after the training period for both groups. We conclude that vOBLA and 5000 m running performance can be significantly improved in well-trained runners using a 4 week training program consisting of 2 HIT sessions (performed at 95% or 100% vVO(2max)) and 4 submaximal run sessions per week. However, the improvement in vVO(2 max), RE, and 1500 in running performance seems to be dependent on the HIT program at 100% vVO(2 max).
Resumo:
The objective of this study was to analyze the relationship of maximal aerobic power and the muscular strength (maximal isotonic strength and vertical jump explosive power) with the running economy (RE) in endurance athletes. Twenty-six male runners (27.9 ± 6.4 years; 62.7 ± 4.3 kg; 168.6 ± 6.1 cm; 6.6 ± 3.1% of body fat) performed in different days the following tests: a) incremental test to determine the maximal oxygen uptake (V̇O2max) and the intensity corresponding to the V̇O2max (IV̇O2max); b) constant-velocity treadmill run to determine RE; c) 1-RM test in the leg press and; d) maximal vertical jump test (VJ). V̇O2max (63.8 ± 8.3 ml/kg/min) was significantly correlated (r = 0.63; p < 0.05) with RE (48.0 ± 6.6 ml/kg/min). However, the IV̇O2max (18.7 ± 1.1 km/h), the maximal isotonic strength (230.3 ± 41.2 kg) and the VJ (30.8 ± 3.8 cm) were not significantly correlated with RE. One concludes that the maximal aerobic power can explain in part the inter-individual RE variability in endurance athletes. However, maximal isotonic strength and explosive strength seem not to be associated with RE values observed in this group of athletes.
Resumo:
Purpose. - The purposes of this study were: i) to compare the physiological responses measured during a specific table tennis incremental test with the physiological responses measured during cycling, arm cranking, and treadmill running tests; and ii) to verify the accuracy of table tennis performance prediction based on the physiological responses from these tests.Methods. - Eleven national level male table tennis players participated in the study and undertook incremental tests using ergometers. Table tennis performance was defined as the ranking obtained during a simulated tournament between the participants.Results. - In general, peak values for physiological variables (e.g., (V) over dotO(2PEAK) and [La]PEAK) were significantly lower (P < 0.05) in the specific test (e.g., (V) over dotO(2PEAK) = 39.9 +/- 1.5 ml.kg(-1) per minute and [La]PEAK = 6.4 +/- 0.5 mmol.L-1) than during cycling (e.g., (V) over dotO(2PEAK) = 41.3 +/- 1.4 ml.kg(-1) per minute and [La]PEAK = 10.2 +/- 0.7 mmol.L-1) or running (e.g., (V) over dotO(2PEAK) = 43.9 +/- 1.5 ml.kg(-1) per minute and [La]PEAK = 10.0 +/- 0.7 mmol.L-1), but higher than during arm cranking (e.g., (V) over dotO(2PEAK) = 26.6 +/- 1.6 ml.kg(-1) per minute and [La]PEAK = 8.9 +/- 0.6 mmol.L-1). At respiratory compensation point intensity (RCP), only the variables measured on arm cranking were lower (P < 0.05) than on the other ergometers. Stepwise multiple regression analysis showed significant correlation between table tennis performance and lactate concentration ([La]) and also rate of perceived effort (RPE) at RCP during cycling (r = 0.89; P < 0.05).Conclusion. - In conclusion, the significant differences obtained between the specific and laboratory ergometers demonstrate the need to use a specific test to measure physiological parameters in table tennis and the physiological parameters measured, independent of the ergometer used, are unable to predict table tennis performance. (C) 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to investigate whether the maximal power output (Pmax) during an incremental test was dependent on the curvature constant (W') of the power-time relationship. Thirty healthy male subjects (maximal oxygen uptake = 3.58 ± 0.40 L·min(-1)) performed a ramp incremental cycling test to determine the maximal oxygen uptake and Pmax, and 4 constant work rate tests to exhaustion to estimate 2 parameters from the modeling of the power-time relationship (i.e., critical power (CP) and W'). Afterwards, the participants were ranked according to their magnitude of W'. The median third was excluded to form a high W' group (HIGH, n = 10), and a low W' group (LOW, n = 10). Maximal oxygen uptake (3.84 ± 0.50 vs. 3.49 ± 0.37 L·min(-1)) and CP (213 ± 22 vs. 200 ± 29 W) were not significantly different between HIGH and LOW, respectively. However, Pmax was significantly greater for the HIGH (337 ± 23 W) than for the LOW (299 ± 40 W). Thus, in physically active individuals with similar aerobic parameters, W' influences the Pmax during incremental testing.
Resumo:
Purpose The purpose of the study was to investigate a possible association between the distance covered in the Hoff test with parameters of maximal oxygen uptake (V_O2MAX), anaerobic threshold, anaerobic fitness, and body composition of professional adult soccer players. Methods Twenty-five professional soccer players (20 ± 3 years) participated in the study. On different days the athletes performed: a graded incremental exercise test in a laboratory to measure V_O2MAX; a specific soccer field test called the Hoff test; a running anaerobic sprint test (RAST); an incremental test on an oval circuit to determine the velocity relative to anaerobic threshold (VAnT) and an estimation of body composition. Results The average V_O2MAX corresponded to 4.1 ± 0.1 L min-1 (54.1 ± 1.2 mL kg-1 min-1 ). The average distance covered during the Hoff test was 1,442.4 ± 30.0 m. The distance covered during the Hoff test showed significant correlations with absolute and expressed in an appropriated scale V_O2MAX (r = 0.44, p = 0.02; r = 0.42, p = 0.02, respectively) while no significant differences were found with body composition, VAnT and RAST variables. Conclusions The present study demonstrated that the distance covered during the Hoff test has weak correlation with V_O2MAX determined in treadmill running, and no correlation with VAnT, body composition and RAST outcomes, probably due to the non-specificity of the proposed tests when associated with the Hoff test.
Resumo:
It is well established that local muscle tissue hypoxia is an important consequence and possibly a relevant adaptive signal of endurance exercise training in humans. It has been reasoned that it might be advantageous to increase this exercise stimulus by working in hypoxia. However, as long-term exposure to severe hypoxia has been shown to be detrimental to muscle tissue, experimental protocols were developed that expose subjects to hypoxia only for the duration of the exercise session and allow recovery in normoxia (live low-train high or hypoxic training). This overview reports data from 27 controlled studies using some implementation of hypoxic training paradigms. Hypoxia exposure varied between 2300 and 5700 m and training duration ranged from 10 days to 8 weeks. A similar number of studies was carried out on untrained and on trained subjects. Muscle structural, biochemical and molecular findings point to a specific role of hypoxia in endurance training. However, based on the available data on global estimates of performance capacity such as maximal oxygen uptake (VO2max) and maximal power output (Pmax), hypoxia as a supplement to training is not consistently found to be of advantage for performance at sea level. There is some evidence mainly from studies on untrained subjects for an advantage of hypoxic training for performance at altitude. Live low-train high may be considered when altitude acclimatization is not an option.
Resumo:
PURPOSE: Alpine ski performance relates closely to both anaerobic and aerobic capacities. During their competitive season, skiers greatly reduce endurance and weight training, and on-snow training becomes predominant. To typify this shift, we compared exhaustive ramp cycling and squat (SJ) and countermovement jumping (CMJ) performance in elite males before and after their competitive season. RESULTS: In postseason compared with preseason: 1) maximal oxygen uptake (VO 2 max) normalized to bodyweight was higher (55.2 +/- 5.2 vs 52.7 +/- 3.6 mL x kg(-1) x min(-1), P < 0.01), but corresponding work rate (W) was unchanged; 2) at ventilatory thresholds (VT), absolute and relative work rates were similar but heart rates were lower; 3) VO2/W slope was greater (9.59 +/- 0.6 vs 9.19 +/- 0.4 mL O2 x min(-1) x W(-1), P = 0.02), with similar flattening (P < 0.01) above V T1 at both time points; and 4) jump height was greater in SJ (47.4 +/- 4.4 vs 44.7 +/- 4.3 cm, P < 0.01) and CMJ (52.7 +/- 4.6 vs 50.4 +/- 5.0 cm, P < 0.01). DISCUSSION: We believe that aerobic capacity and leg power were constrained in preseason and that improvements primarily reflected an in-season recovery from a fatigued state, which was caused by incongruous preseason training. Residual adaptations to high-altitude exposure in preseason could have also affected the results. Nonetheless, modern alpine skiing seemingly provides an ample cardiovascular training stimulus for skiers to maintain their aerobic capacities during the racing season. CONCLUSIONS: We conclude that aerobic fitness and leg explosiveness can be maintained in-season but may be compromised by heavy or excessive preseason training. In addition, ramp test V O2/W slope analysis could be useful for monitoring both positive and negative responses to training.
Resumo:
This study evaluated the effects of 8 weeks of eccentric endurance training (EET) in male subjects (age range 42-66 years) with coronary artery disease (CAD). EET was compared to concentric endurance training (CET) carried out at the same metabolic exercise intensity, three times per week for half an hour. CET ( n=6) was done on a conventional cycle ergometer and EET ( n=6) on a custom-built motor-driven ergometer. During the first 5 weeks of the training program the metabolic load was progressively increased to 60% of peak oxygen uptake in both groups. At this metabolic load, mechanical work rate achieved was 97 (8) W [mean (SE)] for CET and 338 (34) W for EET, respectively. Leg muscle mass was determined by dual-energy X-ray absorptiometry, quadriceps strength with an isokinetic dynamometer and muscle fibre composition of the vastus lateralis muscle with morphometry. The leg muscle mass increased significantly in both groups by some 3%. Strength parameters of knee extensors improved in EET only. Significant changes of +11 (4.9)%, +15 (3.2)% and +9 (2.5)% were reached for peak isometric torque and peak concentric torques at 60 degrees s(-1) and 120 degrees s(-1), respectively. Fibre size increased significantly by 19% in CET only. In conclusion, the present investigation showed that EET is feasible in middle-aged CAD patients and has functional advantages over CET by increasing muscle strength. Muscle mass increased similarly in both groups whereas muscle structural composition was differently affected by the respective training protocols. Potential limitations of this study are the cautiously chosen conditioning protocol and the restricted number of subjects.
Resumo:
BACKGROUND:
Robotics-assisted tilt table technology was introduced for early rehabilitation of neurological patients. It provides cyclical stepping movement and physiological loading of the legs. The aim of the present study was to assess the feasibility of this type of device for peak cardiopulmonary performance testing using able-bodied subjects.
METHODS:
A robotics-assisted tilt table was augmented with force sensors in the thigh cuffs and a work rate estimation algorithm. A custom visual feedback system was employed to guide the subjects' work rate and to provide real time feedback of actual work rate. Feasibility assessment focused on: (i) implementation (technical feasibility), and (ii) responsiveness (was there a measurable, high-level cardiopulmonary reaction?). For responsiveness testing, each subject carried out an incremental exercise test to the limit of functional capacity with a work rate increment of 5 W/min in female subjects and 8 W/min in males.
RESULTS:
11 able-bodied subjects were included (9 male, 2 female; age 29.6 ± 7.1 years: mean ± SD). Resting oxygen uptake (O
Resumo:
INTRODUCTION Supplementation with beta-alanine may have positive effects on severe-intensity, intermittent, and isometric strength-endurance performance. These could be advantageous for competitive alpine skiers, whose races last 45 to 150 s, require metabolic power above the aerobic maximum, and involve isometric muscle work. Further, beta-alanine supplementation affects the muscle force-frequency relationship, which could influence explosiveness. We explored the effects of beta-alanine on explosive jump performance, severe exercise energy metabolism, and severe-intensity ski-like performance. METHODS Nine male elite alpine skiers consumed 4.8 g/d beta-alanine or placebo for 5 weeks in a double-blind fashion. Before and after, they performed countermovement jumps (CMJ), a 90-s cycling bout at 110% VO2max (CLT), and a maximal 90-s box jump test (BJ90). RESULTS Beta-alanine improved maximal (+7 ± 3%, d = 0.9) and mean CMJ power (+7 ± 2%, d = 0.7), tended to reduce oxygen deficit (-3 ± 8%, p = .06) and lactate accumulation (-12 ± 31%) and enhance aerobic energy contribution (+1.3 ± 2.9%, p = .07) in the CLT, and improved performance in the last third of BJ90 (+7 ± 4%, p = .02). These effects were not observed with placebo. CONCLUSIONS Beta-alanine supplementation improved explosive and repeated jump performance in elite alpine skiers. Enhanced muscle contractility could possibly explain improved explosive and repeated jump performance. Increased aerobic energy production could possibly help explain repeated jump performance as well.
Resumo:
Robotics-assisted tilt table (RATT) technology provides body support, cyclical stepping movement and physiological loading. This technology can potentially be used to facilitate the estimation of peak cardiopulmonary performance parameters in patients who have neurological or other problems that may preclude testing on a treadmill or cycle ergometer. The aim of the study was to compare the magnitude of peak cardiopulmonary performance parameters including peak oxygen uptake (VO2peak) and peak heart rate (HRpeak) obtained from a robotics-assisted tilt table (RATT), a cycle ergometer and a treadmill. The strength of correlations between the three devices, test-retest reliability and repeatability were also assessed. Eighteen healthy subjects performed six maximal exercise tests, with two tests on each of the three exercise modalities. Data from the second tests were used for the comparative and correlation analyses. For nine subjects, test-retest reliability and repeatability of VO2peak and HRpeak were assessed. Absolute VO2peak from the RATT, the cycle ergometer and the treadmill was (mean (SD)) 2.2 (0.56), 2.8 (0.80) and 3.2 (0.87) L/min, respectively (p < 0.001). HRpeak from the RATT, the cycle ergometer and the treadmill was 168 (9.5), 179 (7.9) and 184 (6.9) beats/min, respectively (p < 0.001). VO2peak and HRpeak from the RATT vs the cycle ergometer and the RATT vs the treadmill showed strong correlations. Test-retest reliability and repeatability were high for VO2peak and HRpeak for all devices. The results demonstrate that the RATT is a valid and reliable device for exercise testing. There is potential for the RATT to be used in severely impaired subjects who cannot use the standard modalities.
Resumo:
The outer western Crimean shelf of the Black Sea is a natural laboratory to investigate effects of stable oxic versus varying hypoxic conditions on seafloor biogeochemical processes and benthic community structure. Bottom-water oxygen concentrations ranged from normoxic (175 µmol O2/L) and hypoxic (< 63 µmol O2/L) or even anoxic/sulfidic conditions within a few kilometers' distance. Variations in oxygen concentrations between 160 and 10 µmol/L even occurred within hours close to the chemocline at 134 m water depth. Total oxygen uptake, including diffusive as well as fauna-mediated oxygen consumption, decreased from 15 mmol/m**2/d on average in the oxic zone, to 7 mmol/m**2/d on average in the hypoxic zone, correlating with changes in macrobenthos composition. Benthic diffusive oxygen uptake rates, comprising respiration of microorganisms and small meiofauna, were similar in oxic and hypoxic zones (on average 4.5 mmol/m**2/d), but declined to 1.3 mmol/m**2/d in bottom waters with oxygen concentrations below 20 µmol/L. Measurements and modeling of porewater profiles indicated that reoxidation of reduced compounds played only a minor role in diffusive oxygen uptake under the different oxygen conditions, leaving the major fraction to aerobic degradation of organic carbon. Remineralization efficiency decreased from nearly 100 % in the oxic zone, to 50 % in the oxic-hypoxic zone, to 10 % in the hypoxic-anoxic zone. Overall, the faunal remineralization rate was more important, but also more influenced by fluctuating oxygen concentrations, than microbial and geochemical oxidation processes.
Resumo:
In an attempt to improve the current understanding of the adaptive response to exercise in humans, this dissertation performed a series of studies designed to examine the impact of training intensity and mode on aerobic capacity and performance, fibre-type specific adaptations to training, and individual patterns of response across molecular, morphological and genetic factors. Project #1 determined that training intensity, session dose, baseline VO2max and total training volume do not influence the magnitude of change in VO2max by performing a meta-regression, and meta-analysis of 28 different studies. The intensity of training had no effect on the magnitude of increase in maximal oxygen uptake in young healthy participants, but similar adaptations were achieved with lower training doses following high intensity training. Project # 2 determined the acute molecular response, and training-induced adaptations in aerobic performance, aerobic capacity and muscle phenotype following high-intensity interval training (HIT) or endurance exercise (END). The acute molecular response (fibre recruitment and signal activation) and training-induced adaptations in aerobic capacity, aerobic performance, and muscle phenotype were similar following HIT and END. Project # 3 examined the impact of baseline muscle morphology and molecular characteristics on the training response, and if muscle adaptations are coordinated. The muscle phenotype of individuals who experience the largest improvements (high responders) were lower before training for some muscle characteristics and molecular adaptations were coordinated within individual participants. Project # 4 examined the impact of 2 different intensities of HIT on the expression of nuclear and mitochondrial encoded genes targeted by PGC-1α. A systematic upregulation of nuclear and mitochondrial encoded genes was not present in the early recovery period following acute HIT, but the expression of mitochondrial genes were coordinated at an individual level. Collectively, results from the current dissertation contribute to our understanding of the molecular mechanisms influencing skeletal muscle and whole-body adaptive responses to acute exercise and training in humans.