991 resultados para CORRELATION NETWORKS
Resumo:
Existing approaches of social influence analysis usually focus on how to develop effective algorithms to quantize users' influence scores. They rarely consider a person's expertise levels which are arguably important to influence measures. In this paper, we propose a computational approach to measuring the correlation between expertise and social media influence, and we take a new perspective to understand social media influence by incorporating expertise into influence analysis. We carefully constructed a large dataset of 13,684 Chinese celebrities from Sina Weibo (literally 'Sina microblogging'). We found that there is a strong correlation between expertise levels and social media influence scores. In addition, different expertise levels showed influence variation patterns: high-expertise celebrities have stronger influence on the 'audience' in their expertise domains.
Resumo:
In this work, different artificial neural networks (ANN) are developed for the prediction of surface roughness (R a) values in Al alloy 7075-T7351 after face milling machining process. The radial base (RBNN), feed forward (FFNN), and generalized regression (GRNN) networks were selected, and the data used for training these networks were derived from experiments conducted using a high-speed milling machine. The Taguchi design of experiment was applied to reduce the time and cost of the experiments. From this study, the performance of each ANN used in this research was measured with the mean square error percentage and it was observed that FFNN achieved the best results. Also the Pearson correlation coefficient was calculated to analyze the correlation between the five inputs (cutting speed, feed per tooth, axial depth of cut, chip°s width, and chip°s thickness) selected for the network with the selected output (surface roughness). Results showed a strong correlation between the chip thickness and the surface roughness followed by the cutting speed. © ASM International.
Resumo:
In this paper a full analytic model for pause intensity (PI), a no-reference metric for video quality assessment, is presented. The model is built upon the video play out buffer behavior at the client side and also encompasses the characteristics of a TCP network. Video streaming via TCP produces impairments in play continuity, which are not typically reflected in current objective metrics such as PSNR and SSIM. Recently the buffer under run frequency/probability has been used to characterize the buffer behavior and as a measurement for performance optimization. But we show, using subjective testing, that under run frequency cannot reflect the viewers' quality of experience for TCP based streaming. We also demonstrate that PI is a comprehensive metric made up of a combination of phenomena observed in the play out buffer. The analytical model in this work is verified with simulations carried out on ns-2, showing that the two results are closely matched. The effectiveness of the PI metric has also been proved by subjective testing on a range of video clips, where PI values exhibit a good correlation with the viewers' opinion scores. © 2012 IEEE.
Resumo:
An iterative travel time forecasting scheme, named the Advanced Multilane Prediction based Real-time Fastest Path (AMPRFP) algorithm, is presented in this dissertation. This scheme is derived from the conventional kernel estimator based prediction model by the association of real-time nonlinear impacts that caused by neighboring arcs’ traffic patterns with the historical traffic behaviors. The AMPRFP algorithm is evaluated by prediction of the travel time of congested arcs in the urban area of Jacksonville City. Experiment results illustrate that the proposed scheme is able to significantly reduce both the relative mean error (RME) and the root-mean-squared error (RMSE) of the predicted travel time. To obtain high quality real-time traffic information, which is essential to the performance of the AMPRFP algorithm, a data clean scheme enhanced empirical learning (DCSEEL) algorithm is also introduced. This novel method investigates the correlation between distance and direction in the geometrical map, which is not considered in existing fingerprint localization methods. Specifically, empirical learning methods are applied to minimize the error that exists in the estimated distance. A direction filter is developed to clean joints that have negative influence to the localization accuracy. Synthetic experiments in urban, suburban and rural environments are designed to evaluate the performance of DCSEEL algorithm in determining the cellular probe’s position. The results show that the cellular probe’s localization accuracy can be notably improved by the DCSEEL algorithm. Additionally, a new fast correlation technique for overcoming the time efficiency problem of the existing correlation algorithm based floating car data (FCD) technique is developed. The matching process is transformed into a 1-dimensional (1-D) curve matching problem and the Fast Normalized Cross-Correlation (FNCC) algorithm is introduced to supersede the Pearson product Moment Correlation Co-efficient (PMCC) algorithm in order to achieve the real-time requirement of the FCD method. The fast correlation technique shows a significant improvement in reducing the computational cost without affecting the accuracy of the matching process.
Resumo:
Computer networks produce tremendous amounts of event-based data that can be collected and managed to support an increasing number of new classes of pervasive applications. Examples of such applications are network monitoring and crisis management. Although the problem of distributed event-based management has been addressed in the non-pervasive settings such as the Internet, the domain of pervasive networks has its own characteristics that make these results non-applicable. Many of these applications are based on time-series data that possess the form of time-ordered series of events. Such applications also embody the need to handle large volumes of unexpected events, often modified on-the-fly, containing conflicting information, and dealing with rapidly changing contexts while producing results with low-latency. Correlating events across contextual dimensions holds the key to expanding the capabilities and improving the performance of these applications. This dissertation addresses this critical challenge. It establishes an effective scheme for complex-event semantic correlation. The scheme examines epistemic uncertainty in computer networks by fusing event synchronization concepts with belief theory. Because of the distributed nature of the event detection, time-delays are considered. Events are no longer instantaneous, but duration is associated with them. Existing algorithms for synchronizing time are split into two classes, one of which is asserted to provide a faster means for converging time and hence better suited for pervasive network management. Besides the temporal dimension, the scheme considers imprecision and uncertainty when an event is detected. A belief value is therefore associated with the semantics and the detection of composite events. This belief value is generated by a consensus among participating entities in a computer network. The scheme taps into in-network processing capabilities of pervasive computer networks and can withstand missing or conflicting information gathered from multiple participating entities. Thus, this dissertation advances knowledge in the field of network management by facilitating the full utilization of characteristics offered by pervasive, distributed and wireless technologies in contemporary and future computer networks.
Resumo:
Background The HIV virus is known for its ability to exploit numerous genetic and evolutionary mechanisms to ensure its proliferation, among them, high replication, mutation and recombination rates. Sliding MinPD, a recently introduced computational method [1], was used to investigate the patterns of evolution of serially-sampled HIV-1 sequence data from eight patients with a special focus on the emergence of X4 strains. Unlike other phylogenetic methods, Sliding MinPD combines distance-based inference with a nonparametric bootstrap procedure and automated recombination detection to reconstruct the evolutionary history of longitudinal sequence data. We present serial evolutionary networks as a longitudinal representation of the mutational pathways of a viral population in a within-host environment. The longitudinal representation of the evolutionary networks was complemented with charts of clinical markers to facilitate correlation analysis between pertinent clinical information and the evolutionary relationships. Results Analysis based on the predicted networks suggests the following:: significantly stronger recombination signals (p = 0.003) for the inferred ancestors of the X4 strains, recombination events between different lineages and recombination events between putative reservoir virus and those from a later population, an early star-like topology observed for four of the patients who died of AIDS. A significantly higher number of recombinants were predicted at sampling points that corresponded to peaks in the viral load levels (p = 0.0042). Conclusion Our results indicate that serial evolutionary networks of HIV sequences enable systematic statistical analysis of the implicit relations embedded in the topology of the structure and can greatly facilitate identification of patterns of evolution that can lead to specific hypotheses and new insights. The conclusions of applying our method to empirical HIV data support the conventional wisdom of the new generation HIV treatments, that in order to keep the virus in check, viral loads need to be suppressed to almost undetectable levels.
Resumo:
The promise of Wireless Sensor Networks (WSNs) is the autonomous collaboration of a collection of sensors to accomplish some specific goals which a single sensor cannot offer. Basically, sensor networking serves a range of applications by providing the raw data as fundamentals for further analyses and actions. The imprecision of the collected data could tremendously mislead the decision-making process of sensor-based applications, resulting in an ineffectiveness or failure of the application objectives. Due to inherent WSN characteristics normally spoiling the raw sensor readings, many research efforts attempt to improve the accuracy of the corrupted or "dirty" sensor data. The dirty data need to be cleaned or corrected. However, the developed data cleaning solutions restrict themselves to the scope of static WSNs where deployed sensors would rarely move during the operation. Nowadays, many emerging applications relying on WSNs need the sensor mobility to enhance the application efficiency and usage flexibility. The location of deployed sensors needs to be dynamic. Also, each sensor would independently function and contribute its resources. Sensors equipped with vehicles for monitoring the traffic condition could be depicted as one of the prospective examples. The sensor mobility causes a transient in network topology and correlation among sensor streams. Based on static relationships among sensors, the existing methods for cleaning sensor data in static WSNs are invalid in such mobile scenarios. Therefore, a solution of data cleaning that considers the sensor movements is actively needed. This dissertation aims to improve the quality of sensor data by considering the consequences of various trajectory relationships of autonomous mobile sensors in the system. First of all, we address the dynamic network topology due to sensor mobility. The concept of virtual sensor is presented and used for spatio-temporal selection of neighboring sensors to help in cleaning sensor data streams. This method is one of the first methods to clean data in mobile sensor environments. We also study the mobility pattern of moving sensors relative to boundaries of sub-areas of interest. We developed a belief-based analysis to determine the reliable sets of neighboring sensors to improve the cleaning performance, especially when node density is relatively low. Finally, we design a novel sketch-based technique to clean data from internal sensors where spatio-temporal relationships among sensors cannot lead to the data correlations among sensor streams.
Resumo:
This research analyzed the spatial relationship between a mega-scale fracture network and the occurrence of vegetation in an arid region. High-resolution aerial photographs of Arches National Park, Utah were used for digital image processing. Four sets of large-scale joints were digitized from the rectified color photograph in order to characterize the geospatial properties of the fracture network with the aid of a Geographic Information System. An unsupervised landcover classification was carried out to identify the spatial distribution of vegetation on the fractured outcrop. Results of this study confirm that the WNW-ESE alignment of vegetation is dominantly controlled by the spatial distribution of the systematic joint set, which in turn parallels the regional fold axis. This research provides insight into the spatial heterogeneity inherent to fracture networks, as well as the effects of jointing on the distribution of surface vegetation in desert environments.
Resumo:
We develop a framework for estimating the quality of transmission (QoT) of a new lightpath before it is established, as well as for calculating the expected degradation it will cause to existing lightpaths. The framework correlates the QoT metrics of established lightpaths, which are readily available from coherent optical receivers that can be extended to serve as optical performance monitors. Past similar studies used only space (routing) information and thus neglected spectrum, while they focused on oldgeneration noncoherent networks. The proposed framework accounts for correlation in both the space and spectrum domains and can be applied to both fixed-grid wavelength division multiplexing (WDM) and elastic optical networks. It is based on a graph transformation that exposes and models the interference between spectrum-neighboring channels. Our results indicate that our QoT estimates are very close to the actual performance data, that is, to having perfect knowledge of the physical layer. The proposed estimation framework is shown to provide up to 4 × 10-2 lower pre-forward error correction bit error ratio (BER) compared to theworst-case interference scenario,which overestimates the BER. The higher accuracy can be harvested when lightpaths are provisioned with low margins; our results showed up to 47% reduction in required regenerators, a substantial savings in equipment cost.
Resumo:
Computer networks produce tremendous amounts of event-based data that can be collected and managed to support an increasing number of new classes of pervasive applications. Examples of such applications are network monitoring and crisis management. Although the problem of distributed event-based management has been addressed in the non-pervasive settings such as the Internet, the domain of pervasive networks has its own characteristics that make these results non-applicable. Many of these applications are based on time-series data that possess the form of time-ordered series of events. Such applications also embody the need to handle large volumes of unexpected events, often modified on-the-fly, containing conflicting information, and dealing with rapidly changing contexts while producing results with low-latency. Correlating events across contextual dimensions holds the key to expanding the capabilities and improving the performance of these applications. This dissertation addresses this critical challenge. It establishes an effective scheme for complex-event semantic correlation. The scheme examines epistemic uncertainty in computer networks by fusing event synchronization concepts with belief theory. Because of the distributed nature of the event detection, time-delays are considered. Events are no longer instantaneous, but duration is associated with them. Existing algorithms for synchronizing time are split into two classes, one of which is asserted to provide a faster means for converging time and hence better suited for pervasive network management. Besides the temporal dimension, the scheme considers imprecision and uncertainty when an event is detected. A belief value is therefore associated with the semantics and the detection of composite events. This belief value is generated by a consensus among participating entities in a computer network. The scheme taps into in-network processing capabilities of pervasive computer networks and can withstand missing or conflicting information gathered from multiple participating entities. Thus, this dissertation advances knowledge in the field of network management by facilitating the full utilization of characteristics offered by pervasive, distributed and wireless technologies in contemporary and future computer networks.
Resumo:
Single-cell functional proteomics assays can connect genomic information to biological function through quantitative and multiplex protein measurements. Tools for single-cell proteomics have developed rapidly over the past 5 years and are providing unique opportunities. This thesis describes an emerging microfluidics-based toolkit for single cell functional proteomics, focusing on the development of the single cell barcode chips (SCBCs) with applications in fundamental and translational cancer research.
The microchip designed to simultaneously quantify a panel of secreted, cytoplasmic and membrane proteins from single cells will be discussed at the beginning, which is the prototype for subsequent proteomic microchips with more sophisticated design in preclinical cancer research or clinical applications. The SCBCs are a highly versatile and information rich tool for single-cell functional proteomics. They are based upon isolating individual cells, or defined number of cells, within microchambers, each of which is equipped with a large antibody microarray (the barcode), with between a few hundred to ten thousand microchambers included within a single microchip. Functional proteomics assays at single-cell resolution yield unique pieces of information that significantly shape the way of thinking on cancer research. An in-depth discussion about analysis and interpretation of the unique information such as functional protein fluctuations and protein-protein correlative interactions will follow.
The SCBC is a powerful tool to resolve the functional heterogeneity of cancer cells. It has the capacity to extract a comprehensive picture of the signal transduction network from single tumor cells and thus provides insight into the effect of targeted therapies on protein signaling networks. We will demonstrate this point through applying the SCBCs to investigate three isogenic cell lines of glioblastoma multiforme (GBM).
The cancer cell population is highly heterogeneous with high-amplitude fluctuation at the single cell level, which in turn grants the robustness of the entire population. The concept that a stable population existing in the presence of random fluctuations is reminiscent of many physical systems that are successfully understood using statistical physics. Thus, tools derived from that field can probably be applied to using fluctuations to determine the nature of signaling networks. In the second part of the thesis, we will focus on such a case to use thermodynamics-motivated principles to understand cancer cell hypoxia, where single cell proteomics assays coupled with a quantitative version of Le Chatelier's principle derived from statistical mechanics yield detailed and surprising predictions, which were found to be correct in both cell line and primary tumor model.
The third part of the thesis demonstrates the application of this technology in the preclinical cancer research to study the GBM cancer cell resistance to molecular targeted therapy. Physical approaches to anticipate therapy resistance and to identify effective therapy combinations will be discussed in detail. Our approach is based upon elucidating the signaling coordination within the phosphoprotein signaling pathways that are hyperactivated in human GBMs, and interrogating how that coordination responds to the perturbation of targeted inhibitor. Strongly coupled protein-protein interactions constitute most signaling cascades. A physical analogy of such a system is the strongly coupled atom-atom interactions in a crystal lattice. Similar to decomposing the atomic interactions into a series of independent normal vibrational modes, a simplified picture of signaling network coordination can also be achieved by diagonalizing protein-protein correlation or covariance matrices to decompose the pairwise correlative interactions into a set of distinct linear combinations of signaling proteins (i.e. independent signaling modes). By doing so, two independent signaling modes – one associated with mTOR signaling and a second associated with ERK/Src signaling have been resolved, which in turn allow us to anticipate resistance, and to design combination therapies that are effective, as well as identify those therapies and therapy combinations that will be ineffective. We validated our predictions in mouse tumor models and all predictions were borne out.
In the last part, some preliminary results about the clinical translation of single-cell proteomics chips will be presented. The successful demonstration of our work on human-derived xenografts provides the rationale to extend our current work into the clinic. It will enable us to interrogate GBM tumor samples in a way that could potentially yield a straightforward, rapid interpretation so that we can give therapeutic guidance to the attending physicians within a clinical relevant time scale. The technical challenges of the clinical translation will be presented and our solutions to address the challenges will be discussed as well. A clinical case study will then follow, where some preliminary data collected from a pediatric GBM patient bearing an EGFR amplified tumor will be presented to demonstrate the general protocol and the workflow of the proposed clinical studies.
Resumo:
In the past few years, IRC bots, malicious programs which are remotely controlled by the attacker through IRC servers, have become a major threat to the Internet and users. These bots can be used in different malicious ways such as issuing distributed denial of services attacks to shutdown other networks and services, keystrokes logging, spamming, traffic sniffing cause serious disruption on networks and users. New bots use peer to peer (P2P) protocols start to appear as the upcoming threat to Internet security due to the fact that P2P bots do not have a centralized point to shutdown or traceback, thus making the detection of P2P bots is a real challenge. In response to these threats, we present an algorithm to detect an individual P2P bot running on a system by correlating its activities. Our evaluation shows that correlating different activities generated by P2P bots within a specified time period can detect these kind of bots.
Resumo:
The premise of automated alert correlation is to accept that false alerts from a low level intrusion detection system are inevitable and use attack models to explain the output in an understandable way. Several algorithms exist for this purpose which use attack graphs to model the ways in which attacks can be combined. These algorithms can be classified in to two broad categories namely scenario-graph approaches, which create an attack model starting from a vulnerability assessment and type-graph approaches which rely on an abstract model of the relations between attack types. Some research in to improving the efficiency of type-graph correlation has been carried out but this research has ignored the hypothesizing of missing alerts. Our work is to present a novel type-graph algorithm which unifies correlation and hypothesizing in to a single operation. Our experimental results indicate that the approach is extremely efficient in the face of intensive alerts and produces compact output graphs comparable to other techniques.
Resumo:
Nelore is the major beef cattle breed in Brazil with more than 130 million heads. Genome-wide association studies (GWAS) are often used to associate markers and genomic regions to growth and meat quality traits that can be used to assist selection programs. An alternative methodology to traditional GWAS that involves the construction of gene network interactions, derived from results of several GWAS is the AWM (Association Weight Matrices)/PCIT (Partial Correlation and Information Theory). With the aim of evaluating the genetic architecture of Brazilian Nelore cattle, we used high-density SNP genotyping data (~770,000 SNP) from 780 Nelore animals comprising 34 half-sibling families derived from highly disseminated and unrelated sires from across Brazil. The AWM/PCIT methodology was employed to evaluate the genes that participate in a series of eight phenotypes related to growth and meat quality obtained from this Nelore sample.
Resumo:
The language connectome was in-vivo investigated using multimodal non-invasive quantitative MRI. In PPA patients (n=18) recruited by the IRCCS ISNB, Bologna, cortical thickness measures showed a predominant reduction on the left hemisphere (p<0.005) with respect to matched healthy controls (HC) (n=18), and an accuracy of 86.1% in discrimination from Alzheimer’s disease patients (n=18). The left temporal and para-hippocampal gyri significantly correlated (p<0.01) with language fluency. In PPA patients (n=31) recruited by the Northwestern University Chicago, DTI measures were longitudinally evaluated (2-years follow-up) under the supervision of Prof. M. Catani, King’s College London. Significant differences with matched HC (n=27) were found, tract-localized at baseline and widespread in the follow-up. Language assessment scores correlated with arcuate (AF) and uncinate (UF) fasciculi DTI measures. In left-ischemic stroke patients (n=16) recruited by the NatBrainLab, King’s College London, language recovery was longitudinally evaluated (6-months follow-up). Using arterial spin labelling imaging a significant correlation (p<0.01) between language recovery and cerebral blood flow asymmetry, was found in the middle cerebral artery perfusion, towards the right. In HC (n=29) recruited by the DIBINEM Functional MR Unit, University of Bologna, an along-tract algorithm was developed suitable for different tractography methods, using the Laplacian operator. A higher left superior temporal gyrus and precentral operculum AF connectivity was found (Talozzi L et al., 2018), and lateralized UF projections towards the left dorsal orbital cortex. In HC (n=50) recruited in the Human Connectome Project, a new tractography-driven approach was developed for left association fibres, using a principal component analysis. The first component discriminated cortical areas typically connected by the AF, suggesting a good discrimination of cortical areas sharing a similar connectivity pattern. The evaluation of morphological, microstructural and metabolic measures could be used as in-vivo biomarkers to monitor language impairment related to neurodegeneration or as surrogate of cognitive rehabilitation/interventional treatment efficacy.