998 resultados para CONVENTIONAL MICE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaves of Passiflora alata Curtis were characterized for their antioxidant capacity. Antioxidant analyses of DPPH, FRAP, ABTS, ORAC and phenolic compounds were made in three different extracts: aqueous, methanol/acetone and ethanol. Aqueous extract was found to be the best solvent for recovery of phenolic compounds and antioxidant activity, when compared with methanol/acetone and ethanol. To study the anti-inflammatory properties of this extract in experimental type 1 diabetes, NOD mice were divided into two groups: the P. alata group, treated with aqueous extract of P. alata Curtis, and a non-treated control group, followed by diabetes expression analysis. The consumption of aqueous extract and water ad libitum lasted 28 weeks. The treated-group presented a decrease in diabetes incidence, a low quantity of infiltrative cells in pancreatic islets and increased glutathione in the kidney and liver (p<0.05), when compared with the diabetic and non-diabetic control-groups. In conclusion, our results suggest that the consumption of aqueous extract of P. alata may be considered a good source of natural antioxidants and compounds found in its composition can act as anti-inflammatory agents, helping in the control of diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlorophenylpiperazines (CPP) are psychotropic drugs used in nightclub parties and are frequently used in a state of sleep deprivation, a condition which can potentiate the effects of psychoactive drugs. This study aimed to investigate the effects of sleep deprivation and sleep rebound (RB) on anxiety-like measures in mCPP-treated mice using the open field test. We first optimized our procedure by performing dose-effect curves and examining different pretreatment times in naïve male Swiss mice. Subsequently, a separate cohort of mice underwent paradoxical sleep deprivation (PSD) for 24 or 48h. In the last experiment, immediately after the 24h-PSD period, mice received an injection of saline or mCPP, but their general activity was quantified in the open field only after the RB period (24 or 48h). The dose of 5mgmL(-1) of mCPP was the most effective at decreasing rearing behavior, with peak effects 15min after injection. PSD decreased locomotion and rearing behaviors, thereby inhibiting a further impairment induced by mCPP. Plasma concentrations of mCPP were significantly higher in PSD 48h animals compared to the non-PSD control group. Twenty-four hours of RB combined with mCPP administration produced a slight reduction in locomotion. Our results show that mCPP was able to significantly change the behavior of naïve, PSD, and RB mice. When combined with sleep deprivation, there was a higher availability of drug in plasma levels. Taken together, our results suggest that sleep loss can enhance the behavioral effects of the potent psychoactive drug, mCPP, even after a period of rebound sleep.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

G-CSF has been shown to decrease inflammatory processes and to act positively on the process of peripheral nerve regeneration during the course of muscular dystrophy. The aims of this study were to investigate the effects of treatment of G-CSF during sciatic nerve regeneration and histological analysis in the soleus muscle in MDX mice. Six-week-old male MDX mice underwent left sciatic nerve crush and were G-CSF treated at 7 days prior to and 21 days after crush. Ten and twenty-one days after surgery, the mice were euthanized, and the sciatic nerves were processed for immunohistochemistry (anti-p75(NTR) and anti-neurofilament) and transmission electron microscopy. The soleus muscles were dissected out and processed for H&E staining and subsequent morphologic analysis. Motor function analyses were performed at 7 days prior to and 21 days after sciatic crush using the CatWalk system and the sciatic nerve index. Both groups treated with G-CSF showed increased p75(NTR) and neurofilament expression after sciatic crush. G-CSF treatment decreased the number of degenerated and regenerated muscle fibers, thereby increasing the number of normal muscle fibers. The reduction in p75(NTR) and neurofilament indicates a decreased regenerative capacity in MDX mice following a lesion to a peripheral nerve. The reduction in motor function in the crushed group compared with the control groups may reflect the cycles of muscle degeneration/regeneration that occur postnatally. Thus, G-CSF treatment increases motor function in MDX mice. Nevertheless, the decrease in baseline motor function in these mice is not reversed completely by G-CSF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcus aureus aggravates the allergic eosinophilic inflammation. We hypothesized that Staphylococcus aureus-derived enterotoxins directly affect eosinophil functions. Therefore, this study investigated the effects of Staphylococcal enterotoxins A and B (SEA and SEB) on human and mice eosinophil chemotaxis and adhesion in vitro, focusing on p38 MAPK phosphorylation and intracellular Ca(2+) mobilization. Eosinophil chemotaxis was evaluated using a microchemotaxis chamber, whereas adhesion was performed in VCAM-1 and ICAM-1-coated plates. Measurement of p38 MAPK phosphorylation and intracellular Ca(2+) levels were monitored by flow cytometry and fluorogenic calcium-binding dye, respectively. Prior incubation (30 to 240 min) of human blood eosinophils with SEA (0.5 to 3 ng/ml) significantly reduced eotaxin-, PAF- and RANTES-induced chemotaxis (P<0.05). Likewise, SEB (1 ng/ml, 30 min) significantly reduced eotaxin-induced human eosinophil chemotaxis (P<0.05). The reduction of eotaxin-induced human eosinophil chemotaxis by SEA and SEB was prevented by anti-MHC monoclonal antibody (1 μg/ml). In addition, SEA and SEB nearly suppressed the eotaxin-induced human eosinophil adhesion in ICAM-1- and VCAM-1-coated plates. SEA and SEB prevented the increases of p38 MAPK phosphorylation and Ca(2+) levels in eotaxin-activated human eosinophils. In separate protocols, we evaluated the effects of SEA on chemotaxis and adhesion of eosinophils obtained from mice bone marrow. SEA (10 ng/ml) significantly reduced the eotaxin-induced chemotaxis along with cell adhesion to both ICAM-1 and VCAM-1-coated plates (P<0.05). In conclusion, the inhibition by SEA and SEB of eosinophil functions (chemotaxis and adhesion) are associated with reductions of p38 MAPK phosphorylation and intracellular Ca(2+) mobilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies from our group have demonstrated the protective effect of S-nitroso-N-acetylcysteine (SNAC) on the cardiovascular system in dyslipidemic LDLr-/- mice that develop atheroma and left ventricular hypertrophy after 15 days on a high fat diet. We have shown that SNAC treatment attenuates plaque development via the suppression of vascular oxidative stress and protects the heart from structural and functional myocardial alterations, such as heart arrhythmia, by reducing cardiomyocyte sensitivity to catecholamines. Here we investigate the ability of SNAC to modulate oxidative stress and cell survival in cardiomyocytes during remodeling and correlation with β₂-AR signaling in mediating this protection. Ventricular superoxide (O₂⁻) and hydrogen peroxide (H₂O₂) generation was measured by HPLC methods to allow quantification of dihydroethidium (DHE) products. Ventricular histological sections were stained using terminal dUTP nick-end labeling (TUNEL) to identify nuclei with DNA degradation (apoptosis) and this was confirmed by Western blot for cleaved caspase-3 and caspase-7 protein expression. The findings show that O₂⁻ and H₂O₂ production and also cell apoptosis were increased during left ventricular hypertrophy (LVH). SNAC treatment reduced oxidative stress during on cardiac remodeling, measured by decreased H₂O₂ and O₂⁻ production (65% and 52%, respectively), and a decrease in the ratio of p-Ser1177 eNOS/total eNOS. Left ventricle (LV) from SNAC-treated mice revealed a 4-fold increase in β₂-AR expression associated with coupling change to Gi; β₂-ARs-S-nitrosation (β₂-AR-SNO) increased 61%, while apoptosis decreased by 70%. These results suggest that the cardio-protective effect of SNAC treatment is primarily through its anti-oxidant role and is associated with β₂-ARs overexpression and β₂-AR-SNO via an anti-apoptotic pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endurance exercise training as well as leucine supplementation modulates glucose homeostasis and protein turnover in mammals. Here, we analyze whether leucine supplementation alters the effects of endurance exercise on these parameters in healthy mice. Mice were distributed into sedentary (C) and exercise (T) groups. The exercise group performed a 12-week swimming protocol. Half of the C and T mice, designated as the CL and TL groups, were supplemented with leucine (1.5 % dissolved in the drinking water) throughout the experiment. As well known, endurance exercise training reduced body weight and the retroperitoneal fat pad, increased soleus mass, increased VO2max, decreased muscle proteolysis, and ameliorated peripheral insulin sensitivity. Leucine supplementation had no effect on any of these parameters and worsened glucose tolerance in both CL and TL mice. In the soleus muscle of the T group, AS-160(Thr-642) (AKT substrate of 160 kDa) and AMPK(Thr-172) (AMP-Activated Protein Kinase) phosphorylation was increased by exercise in both basal and insulin-stimulated conditions, but it was reduced in TL mice with insulin stimulation compared with the T group. Akt phosphorylation was not affected by exercise but was lower in the CL group compared with the other groups. Leucine supplementation increased mTOR phosphorylation at basal conditions, whereas exercise reduced it in the presence of insulin, despite no alterations in protein synthesis. In trained groups, the total FoxO3a protein content and the mRNA for the specific isoforms E2 and E3 ligases were reduced. In conclusion, leucine supplementation did not potentiate the effects of endurance training on protein turnover, and it also reduced its positive effects on glucose homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this investigation was to evaluate the effects of 3 overtraining (OT) protocols on the glial activation and apoptosis in the spinal cords of mice. Rodents were divided into control (C; sedentary mice), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up) and overtrained by running without inclination (OTR). The incremental load test, ambulation test, exhaustive test and functional behavioural assessment were used as performance evaluation parameters. 36 h after the exhaustive test, the dorsal and ventral parts of the lumbar spinal cord (L4-L6) were dissected for subsequent protein analysis by immunoblotting. The OT protocols led to similar responses of some performance parameters. The ventral glial fibrillary acidic protein (GFAP) protein levels were diminished in the OTR/up and OTR compared to CT and OTR/down groups. The ventral ionized calcium binding adaptor molecule 1 (Iba-1), and the dorsal GFAP and Iba-1 protein levels were increased in the OTR/down compared to the other groups. The ratio between the cleaved capase-3/caspase-3 and cleaved caspase-9/caspase-9 measured in the spinal cord were not sensitive to the OT protocols. In summary, the OTR/down activated the glial cells in the motor (i. e. Iba-1) and sensory (i. e. GFAP and Iba-1) neurons without leading to apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative stress and inflammatory processes strongly contribute to pathogenesis in Duchenne muscular dystrophy (DMD). Based on evidence that excess iron may increase oxidative stress and contribute to the inflammatory response, we investigated whether deferoxamine (DFX), a potent iron chelating agent, reduces oxidative stress and inflammation in the diaphragm (DIA) muscle of mdx mice (an experimental model of DMD). Fourteen-day-old mdx mice received daily intraperitoneal injections of DFX at a dose of 150 mg/kg body weight, diluted in saline, for 14 days. C57BL/10 and control mdx mice received daily intraperitoneal injections of saline only, for 14 days. Grip strength was evaluated as a functional measure, and blood samples were collected for biochemical assessment of muscle fiber degeneration. In addition, the DIA muscle was removed and processed for histopathology and Western blotting analysis. In mdx mice, DFX reduced muscle damage and loss of muscle strength. DFX treatment also resulted in a significant reduction of dystrophic inflammatory processes, as indicated by decreases in the inflammatory area and in NF-κB levels. DFX significantly decreased oxidative damage, as shown by lower levels of 4-hydroxynonenal and a reduction in dihydroethidium staining in the DIA muscle of mdx mice. The results of the present study suggest that DFX may be useful in therapeutic strategies to ameliorate dystrophic muscle pathology, possibly via mechanisms involving oxidative and inflammatory pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dystrophin-deficient muscles have repeated cycles of necrosis and regeneration, being susceptible to injury induced by muscle contractions. Some studies have demonstrated that tendons are also affected in mdx mice, based especially on the changes in biomechanical properties arising from the respective linked muscles. However, most studies have focused only on alterations in the myotendinous junction. Thus, the purpose of this work was to study biochemical and morphological alterations in the Achilles tendons of 60-day-old mdx mice. Hydroxyproline quantification, showed higher collagen concentration in the mdx mice as compared with the control. No difference between the tendons of both groups was found in the noncollagenous proteins dosage, and in the amount of collagen type III detected in the western blotting analysis. The zymography for gelatinases detection showed higher amounts of metaloproteinase-2 (active isoform) and of metalloproteinase-9 (latent isoform) in the mdx mice. Measurements of birefringence, using polarization microscopy, showed higher molecular organization of the collagen fibers in the tendons of mdx mice in comparison to the control group, with presence of larger areas of crimp. Ponceau SS-stained tendon sections showed stronger staining of the extracellular matrix in the mdx groups. Toluidine blue-stained sections showed more intense basophilia in tendons of the control group. In morphometry, a higher number of inflammatory cells was detected in the epitendon of mdx group. In conclusion, the Achilles tendon of 60-day-old mdx mice presents higher collagen concentration and organization of the collagen fibers, enhanced metalloproteinase-2 activity, as well as prominent presence of inflammatory cells and lesser proteoglycans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Placental tissue injury is concomitant with tumor development. We investigated tumor-driven placental damage by tracing certain steps of the protein synthesis and degradation pathways under leucine-rich diet supplementation in MAC16 tumor-bearing mice. Cell signaling and ubiquitin-proteasome pathways were assessed in the placental tissues of pregnant mice, which were distributed into three groups on a control diet (pregnant control, tumor-bearing pregnant, and pregnant injected with MAC-ascitic fluid) and three other groups on a leucine-rich diet (pregnant, tumor-bearing pregnant, and pregnant injected with MAC-ascitic fluid). MAC tumor growth down-regulated the cell-signaling pathways of the placental tissue and decreased the levels of IRS-1, Akt/PKB, Erk/MAPK, mTOR, p70S6K, STAT3, and STAT6 phosphorylated proteins, as assessed by the multiplex Millipore Luminex assay. Leucine supplementation maintained the levels of these proteins within the established cell-signaling pathways. In the tumor-bearing group (MAC) only, the placental tissue showed increased PC5 mRNA expression, as assessed by quantitative RT-PCR, decreased 19S and 20S protein expression, as assessed by Western blot analysis, and decreased placental tyrosine levels, likely reflecting up-regulation of the ubiquitin-proteasome pathway. Similar effects were found in the pregnant injected with MAC-ascitic fluid group, confirming that the effects of the tumor were mimicked by MAC-ascitic fluid injection. Although tumor progression occurred, the degradation pathway-related protein levels were modulated under leucine-supplementation conditions. In conclusion, tumor evolution reduced the protein expression of the cell-signaling pathway associated with elevated protein degradation, thereby jeopardizing placental activity. Under the leucine-rich diet, the impact of cancer on placental function could be minimized by improving the cell-signaling activity and reducing the proteolytic process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample representativeness, and minimizing the effect of the presence of contaminants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maternal high-fat diet (HFD) impairs hippocampal development of offspring promoting decreased proliferation of neural progenitors, in neuronal differentiation, in dendritic spine density and synaptic plasticity reducing neurogenic capacity. Notch signaling pathway participates in molecular mechanisms of the neurogenesis. The activation of Notch signaling leads to the upregulation of Hes5, which inhibits the proliferation and differentiation of neural progenitors. This study aimed to investigate the Notch/Hes pathway activation in the hippocampus of the offspring of dams fed an HFD. Female Swiss mice were fed a control diet (CD) and an HFD from pre-mating until suckling. The bodyweight and mass of adipose tissue in the mothers and pups were also measured. The mRNA and protein expression of Notch1, Hes5, Mash1, and Delta1 in the hippocampus was assessed by RT-PCR and western blotting, respectively. Dams fed the HFD and their pups had an increased bodyweight and amount of adipose tissue. Furthermore, the offspring of mothers fed the HFD exhibited an increased Hes5 expression in the hippocampus compared with CD offspring. In addition, HFD offspring also expressed increased amounts of Notch1 and Hes5 mRNA, whereas Mash1 expression was decreased. However, the expression of Delta1 did not change significantly. We propose that the overexpression of Hes5, a Notch effector, downregulates the expression of the proneural gene Mash1 in the offspring of obese mothers, delaying cellular differentiation. These results provide further evidence that an offspring's hippocampus is molecularly susceptible to maternal HFD and suggest that Notch1 signaling in this brain region is important for neuronal differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, all publicly-accessible published findings on Alicyclobacillus acidoterrestris heat resistance in fruit beverages as affected by temperature and pH were compiled. Then, study characteristics (protocols, fruit and variety, °Brix, pH, temperature, heating medium, culture medium, inactivation method, strains, etc.) were extracted from the primary studies, and some of them incorporated to a meta-analysis mixed-effects linear model based on the basic Bigelow equation describing the heat resistance parameters of this bacterium. The model estimated mean D* values (time needed for one log reduction at a temperature of 95 °C and a pH of 3.5) of Alicyclobacillus in beverages of different fruits, two different concentration types, with and without bacteriocins, and with and without clarification. The zT (temperature change needed to cause one log reduction in D-values) estimated by the meta-analysis model were compared to those ('observed' zT values) reported in the primary studies, and in all cases they were within the confidence intervals of the model. The model was capable of predicting the heat resistance parameters of Alicyclobacillus in fruit beverages beyond the types available in the meta-analytical data. It is expected that the compilation of the thermal resistance of Alicyclobacillus in fruit beverages, carried out in this study, will be of utility to food quality managers in the determination or validation of the lethality of their current heat treatment processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the tissue compatibility of a silorane-based resin system (FiltekTM Silorane) and a methacrylate-based nanoparticle resin (FiltekTM Supreme XT) after implantation in the subcutaneous connective tissue of isogenic mice. One hundred and thirty five male isogenic BALB/c mice were randomly assigned to 12 experimental and 3 control groups, according to the implanted material and the experimental period of 7, 21 and 63 days. At the end of each period, the animals were killed and the tubes with the surrounding tissues were removed and processed for microscopic analysis. Samples were subjected to a descriptive and a semi-quantitative analyses using a 4-point scoring system (0-3) to evaluate the collagen fiber formation and inflammatory infiltrate. Data were statistically analyzed using the Kruskal Wallis test (?=0.05). The results showed that there was no significant difference between the experimental and control groups considering the three evaluation periods (p>0.05). The silorane-based and the methacrylate-based nanoparticle resins presented similar tissue response to that of the empty tube (control group) after subcutaneous implantation in isogenic mice.