882 resultados para CONTINUOUS THERMODYNAMICS
Resumo:
In the structural health monitoring (SHM) field, long-term continuous vibration-based monitoring is becoming increasingly popular as this could keep track of the health status of structures during their service lives. However, implementing such a system is not always feasible due to on-going conflicts between budget constraints and the need of sophisticated systems to monitor real-world structures under their demanding in-service conditions. To address this problem, this paper presents a comprehensive development of a cost-effective and flexible vibration DAQ system for long-term continuous SHM of a newly constructed institutional complex with a special focus on the main building. First, selections of sensor type and sensor positions are scrutinized to overcome adversities such as low-frequency and low-level vibration measurements. In order to economically tackle the sparse measurement problem, a cost-optimized Ethernet-based peripheral DAQ model is first adopted to form the system skeleton. A combination of a high-resolution timing coordination method based on the TCP/IP command communication medium and a periodic system resynchronization strategy is then proposed to synchronize data from multiple distributed DAQ units. The results of both experimental evaluations and experimental–numerical verifications show that the proposed DAQ system in general and the data synchronization solution in particular work well and they can provide a promising cost-effective and flexible alternative for use in real-world SHM projects. Finally, the paper demonstrates simple but effective ways to make use of the developed monitoring system for long-term continuous structural health evaluation as well as to use the instrumented building herein as a multi-purpose benchmark structure for studying not only practical SHM problems but also synchronization related issues.
Resumo:
Critical illness, acute renal failure and continuous renal replacement therapy (CRRT) are associated with changes in pharmacokinetics. Initial antibiotic dose should be based on published volume of distribution and generally be at least the standard dose, as volume of distribution is usually unchanged or increased. Subsequent doses should be based on total clearance. Total clearance varies with the CRRT clearance which mainly depends on effluent flow rate, sieving coefficient/saturation coefficient. As antibiotic clearance by healthy kidneys is usually higher than clearance by CRRT, except for colistin, subsequent doses should generally be lower than given to patients without renal dysfunction. In the future therapeutic drug monitoring, together with sophisticated pharmacokinetic models taking into account the pharmacokinetic variability, may enable more appropriate individualized dosing.
Resumo:
In continuum one-dimensional space, a coupled directed continuous time random walk model is proposed, where the random walker jumps toward one direction and the waiting time between jumps affects the subsequent jump. In the proposed model, the Laplace-Laplace transform of the probability density function P(x,t) of finding the walker at position at time is completely determined by the Laplace transform of the probability density function φ(t) of the waiting time. In terms of the probability density function of the waiting time in the Laplace domain, the limit distribution of the random process and the corresponding evolving equations are derived.
Resumo:
The work studies the extent of asymmetric flow in water models of continuous casting molds of two different configurations. In the molds where fluid is discharged through multiple holes at the bottom, the flow pattern in the lower portion depends on the size of the lower two recirculating domains. If they reach the mold bottom, the flow pattern in the lower portion is symmetrical about the central plane; otherwise, it is asymmetrical. On the other hand, in the molds where the fluid is discharged through the entire mold cross section, the flow pattern is always asymmetrical if the aspect ratio is 1:6.25 or more. The fluid jet swirls while emerging through the nozzle. The interaction of the swirling Jets with the wide sidewalls of the mold gives rise to asymmetrical flow inside the mold. In the molds with lower aspect ratios, where the jets do not touch the wide side walls, the flow pattern is symmetrical about the central plane.
Resumo:
The binding of xylo-oligosaccharides to Chainia endoxylanase resulted in a decrease in fluorescence intensity of the enzyme with the formation of 1:1 complex. Equilibrium and thermodynamic parameters of ligand binding were determined by fluorescence titrations and titration calorimetry. The affinity of xylanase for the oligosaccharides increases in the order X-2 < X-3 < X-4 less than or equal to X-5. Contributions from the enthalpy towards the free energy change decreased with increasing chain length from X-2 to X-4, whereas an increase in entropy was observed, the change in enthalpy and entropy of binding being compensatory. The entropically driven binding process suggested that hydrophobic interactions as well as hydrogen bonds play a predominant role in ligand binding.
Resumo:
The extended recruitment season for short-lived species such as prawns biases the estimation of growth parameters from length-frequency data when conventional methods are used. We propose a simple method for overcoming this bias given a time series of length-frequency data. The difficulties arising from extended recruitment are eliminated by predicting the growth of the succeeding samples and the length increments of the recruits in previous samples. This method requires that some maximum size at recruitment can be specified. The advantages of this multiple length-frequency method are: it is simple to use; it requires only three parameters; no specific distributions need to be assumed; and the actual seasonal recruitment pattern does not have to be specified. We illustrate the new method with length-frequency data on the tiger prawn Penaeus esculentus from the north-western Gulf of Carpentaria, Australia.
Resumo:
Enthalpy changes of the crystal-plastic and plastic-liquid transitions are related to the temperature range of stability of the plastic phase. Thermodynamics of the plastic state of binary mixtures have been examined. Infrared correlation times, τc, and activation energies have been measured for a few molecules in the plastic state. Molecular tumbling times, τt, have also been measured employing ESR spectra of a spin-probe. Plots of log τc(τt) 1/T are continuous through the plastic-liquid transition. Activation energies for molecular motion seem to vary in the same direction as the ΔH of the plastic-crystal transition. Infrared correlation times of solute molecules in binary solutions in the plastic and the liquid states show interesting variations with solute concentration.
Resumo:
Abstract is not available.
Resumo:
Continuous odour monitoring technologies are necessary to understand the complex odour-generating mechanisms within poultry housing as well as to identify strategies to reduce the impact of odour emissions on local communities. To evaluate electronic nose (EN) technologies for continuously assessing odour concentration in poultry housing, a mobile laboratory containing an electronic nose and an associated sample delivery system was deployed to a commercial poultry farm and tested over a broiler production cycle. The results demonstrated that it was possible to develop a model to allow an electronic nose to provide a semi-continuous measurement of odour concentrations. The electronic nose was also able to demonstrate the influence of shed conditions on odour emissions.
Resumo:
The tomato I-3 gene introgressed from the Lycopersicon pennellii accession LA716 confers resistance to race 3 of the fusarium wilt pathogen Fusarium oxysporum f. sp. lycopersici. We have improved the high-resolution map of the I-3 region of tomato chromosome 7 with the development and mapping of 31 new PCR-based markers. Recombinants recovered from L. esculentum cv. M82 × IL7-2 F2 and (IL7-2 × IL7-4) × M82 TC1F2 mapping populations, together with recombinants recovered from a previous M82 × IL7-3 F2 mapping population, were used to position these markers. A significantly higher recombination frequency was observed in the (IL7-2 × IL7-4) × M82 TC1F2 mapping population based on a reconstituted L. pennellii chromosome 7 compared to the other two mapping populations based on smaller segments of L. pennellii chromosome 7. A BAC contig consisting of L. esculentum cv. Heinz 1706 BACs covering the I-3 region has also been established. The new high-resolution map places the I-3 gene within a 0.38 cM interval between the molecular markers RGA332 and bP23/gPT with an estimated physical size of 50-60 kb. The I-3 region was found to display almost continuous microsynteny with grape chromosome 12 but interspersed microsynteny with Arabidopsis thaliana chromosomes 1, 2 and 3. An S-receptor-like kinase gene family present in the I-3 region of tomato chromosome 7 was found to be present in the microsyntenous region of grape chromosome 12 but was absent altogether from the A. thaliana genome.
Resumo:
Security models for two-party authenticated key exchange (AKE) protocols have developed over time to capture the security of AKE protocols even when the adversary learns certain secret values. Increased granularity of security can be modelled by considering partial leakage of secrets in the manner of models for leakage-resilient cryptography, designed to capture side-channel attacks. In this work, we use the strongest known partial-leakage-based security model for key exchange protocols, namely continuous after-the-fact leakage eCK (CAFL-eCK) model. We resolve an open problem by constructing the first concrete two-pass leakage-resilient key exchange protocol that is secure in the CAFL-eCK model.
Resumo:
Cultivation and cropping of soils results in a decline in soil organic carbon and soil nitrogen, and can lead to reduced crop yields. The CENTURY model was used to simulate the effects of continuous cultivation and cereal cropping on total soil organic matter (C and N), carbon pools, nitrogen mineralisation, and crop yield from 6 locations in southern Queensland. The model was calibrated for each replicate from the original datasets, allowing comparisons for each replicate rather than site averages. The CENTURY model was able to satisfactorily predict the impact of long-term cultivation and cereal cropping on total organic carbon, but was less successful in simulating the different fractions and nitrogen mineralisation. The model firstly over-predicted the initial (pre-cropping) soil carbon and nitrogen concentration of the sites. To account for the unique shrinking and swelling characteristics of the Vertosol soils, the default annual decomposition rates of the slow and passive carbon pools were doubled, and then the model accurately predicted initial conditions. The ability of the model to predict carbon pool fractions varied, demonstrating the difficulty inherent in predicting the size of these conceptual pools. The strength of the model lies in the ability to closely predict the starting soil organic matter conditions, and the ability to predict the impact of clearing, cultivation, fertiliser application, and continuous cropping on total soil carbon and nitrogen.
Resumo:
BACKGROUND OR CONTEXT Thermodynamics is a core concept for mechanical engineers yet notoriously difficult. Evidence suggests students struggle to understand and apply the core fundamental concepts of thermodynamics with analysis indicating a problem with student learning/engagement. A contributing factor is that thermodynamics is a ‘science involving concepts based on experiments’ (Mayhew 1990) with subject matter that cannot be completely defined a priori. To succeed, students must engage in a deep-holistic approach while taking ownership of their learning. The difficulty in achieving this often manifests itself in students ‘not getting’ the principles and declaring thermodynamics ‘hard’. PURPOSE OR GOAL Traditionally, students practice and “learn” the application of thermodynamics in their tutorials, however these do not consider prior conceptions (Holman & Pilling 2004). As ‘hands on’ learning is the desired outcome of tutorials it is pertinent to study methods of improving their efficacy. Within the Australian context, the format of thermodynamics tutorials has remained relatively unchanged over the decades, relying anecdotally on a primarily didactic pedagogical approach. Such approaches are not conducive to deep learning (Ramsden 2003) with students often disengaged from the learning process. Evidence suggests (Haglund & Jeppsson 2012), however, that a deeper level and ownership of learning can be achieved using a more constructivist approach for example through self generated analogies. This pilot study aimed to collect data to support the hypothesis that the ‘difficulty’ of thermodynamics is associated with the pedagogical approach of tutorials rather than actual difficulty in subject content or deficiency in students. APPROACH Successful application of thermodynamic principles requires solid knowledge of the core concepts. Typically, tutorial sessions guide students in this application. However, a lack of deep and comprehensive understanding can lead to student confusion in the applications resulting in the learning of the ‘process’ of application without understanding ‘why’. The aim of this study was to gain empirical data on student learning of both concepts and application, within thermodynamic tutorials. The approach taken for data collection and analysis was: - 1 Four concurrent tutorial streams were timetabled to examine student engagement/learning in traditional ‘didactic’ (3 weeks) and non-traditional (3 weeks). In each week, two of the selected four sessions were traditional and two non-traditional. This provided a control group for each week. - 2 The non-traditional tutorials involved activities designed to promote student-centered deep learning. Specific pedagogies employed were: self-generated analogies, constructivist, peer-to-peer learning, inquiry based learning, ownership of learning and active learning. - 3 After a three-week period, teaching styles of the selected groups was switched, to allow each group to experience both approaches with the same tutor. This also acted to mimimise any influence of tutor personality / style on the data. - 4 At the conclusion of the trial participants completed a ‘5 minute essay’ on how they liked the sessions, a small questionnaire, modelled on the modified (Christo & Hoang, 2013)SPQ designed by Biggs (1987) and a small formative quiz to gauge the level of learning achieved. DISCUSSION Preliminary results indicate that overall students respond positively to in class demonstrations (inquiry based learning), and active learning activities. Within the active learning exercises, the current data suggests students preferred individual rather than group or peer-to-peer activities. Preliminary results from the open-ended questions such as “What did you like most/least about this tutorial” and “do you have other comments on how this tutorial could better facilitate your learning”, however, indicated polarising views on the nontraditional tutorial. Some student’s responded that they really like the format and emphasis on understanding the concepts, while others were very vocal that that ‘hated’ the style and just wanted the solutions to be presented by the tutor. RECOMMENDATIONS/IMPLICATIONS/CONCLUSION Preliminary results indicated a mixed, but overall positive response by students with more collaborative tutorials employing tasks promoting inquiry based, peer-to-peer, active, and ownership of learning activities. Preliminary results from student feedback supports evidence that students learn differently, and running tutorials focusing on only one pedagogical approached (typically didactic) may not be beneficial to all students. Further, preliminary data suggests that the learning / teaching style of both students and tutor are important to promoting deep learning in students. Data collection is still ongoing and scheduled for completion at the end of First Semester (Australian academic calendar). The final paper will examine in more detail the results and analysis of this project.
Resumo:
New algorithms for the continuous wavelet transform are developed that are easy to apply, each consisting of a single-pass finite impulse response (FIR) filter, and several times faster than the fastest existing algorithms. The single-pass filter, named WT-FIR-1, is made possible by applying constraint equations to least-squares estimation of filter coefficients, which removes the need for separate low-pass and high-pass filters. Non-dyadic two-scale relations are developed and it is shown that filters based on them can work more efficiently than dyadic ones. Example applications to the Mexican hat wavelet are presented.