921 resultados para COMPLEXITY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of focus on opportunities describes how many new goals, options, and possibilities employees believe to have in their personal future at work. This study investigated the specific and shared effects of age, job complexity, and the use of successful aging strategies called selection, optimization, and compensation (SOC) in predicting focus on opportunities. Results of data collected from 133 employees of one company (mean age = 38 years, SD = 13, range 16–65 years) showed that age was negatively, and job complexity and use of SOC strategies were positively related to focus on opportunities. In addition, older employees in high-complexity jobs and older employees in low-complexity jobs with high use of SOC strategies were better able to maintain a focus on opportunities than older employees in low-complexity jobs with low use of SOC strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Focus on opportunities is a cognitive-motivational facet of occupational future time perspective that describes how many new goals, options, and possibilities individuals expect to have in their personal work-related futures. This study examined focus on opportunities as a mediator of the relationships between age and work performance and between job complexity and work performance. In addition, it was expected that job complexity buffers the negative relationship between age and focus on opportunities and weakens the negative indirect effect of age on work performance. Results of mediation, moderation, and moderated mediation analyses with data collected from 168 employees in 41 organizations (mean age = 40.22 years, SD = 10.43, range = 19-64 years) as well as 168 peers providing work performance ratings supported the assumptions. The findings suggest that future studies on the role of age for work design and performance should take employees' focus on opportunities into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the consumer, flavor is arguably the most important aspect of a good coffee. Coffee flavor is extremely complex and arises from numerous chemical, biological and physical influences of cultivar, coffee cherry maturity, geographical growing location, production, processing, roasting and cup preparation. Not surprisingly there is a large volume of research published detailing the volatile and non-volatile compounds in coffee and that are likely to be playing a role in coffee flavor. Further, there is much published on the sensory properties of coffee. Nevertheless, the link between flavor components and the sensory properties expressed in the complex matrix of coffee is yet to be fully understood. This paper provides an overview of the chemical components that are thought to be involved in the flavor and sensory quality of Arabica coffee.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Minimum Description Length (MDL) is an information-theoretic principle that can be used for model selection and other statistical inference tasks. There are various ways to use the principle in practice. One theoretically valid way is to use the normalized maximum likelihood (NML) criterion. Due to computational difficulties, this approach has not been used very often. This thesis presents efficient floating-point algorithms that make it possible to compute the NML for multinomial, Naive Bayes and Bayesian forest models. None of the presented algorithms rely on asymptotic analysis and with the first two model classes we also discuss how to compute exact rational number solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix decompositions, where a given matrix is represented as a product of two other matrices, are regularly used in data mining. Most matrix decompositions have their roots in linear algebra, but the needs of data mining are not always those of linear algebra. In data mining one needs to have results that are interpretable -- and what is considered interpretable in data mining can be very different to what is considered interpretable in linear algebra. --- The purpose of this thesis is to study matrix decompositions that directly address the issue of interpretability. An example is a decomposition of binary matrices where the factor matrices are assumed to be binary and the matrix multiplication is Boolean. The restriction to binary factor matrices increases interpretability -- factor matrices are of the same type as the original matrix -- and allows the use of Boolean matrix multiplication, which is often more intuitive than normal matrix multiplication with binary matrices. Also several other decomposition methods are described, and the computational complexity of computing them is studied together with the hardness of approximating the related optimization problems. Based on these studies, algorithms for constructing the decompositions are proposed. Constructing the decompositions turns out to be computationally hard, and the proposed algorithms are mostly based on various heuristics. Nevertheless, the algorithms are shown to be capable of finding good results in empirical experiments conducted with both synthetic and real-world data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a two stage split vector quantization method with optimum bit allocation, for achieving minimum computational complexity. This also results in much lower memory requirement than the recently proposed switched split vector quantization method. To improve the rate-distortion performance further, a region specific normalization is introduced, which results in 1 bit/vector improvement over the typical two stage split vector quantizer, for wide-band LSF quantization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present two discriminative language modelling techniques for Lempel-Ziv-Welch (LZW) based LID system. The previous approach to LID using LZW algorithm was to directly use the LZW pattern tables forlanguage modelling. But, since the patterns in a language pattern table are shared by other language pattern tables, confusability prevailed in the LID task. For overcoming this, we present two pruning techniques (i) Language Specific (LS-LZW)-in which patterns common to more than one pattern table are removed. (ii) Length-Frequency product based (LF-LZW)-in which patterns having their length-frequency product below a threshold are removed. These approaches reduce the classification score (Compression Ratio [LZW-CR] or the weighted discriminant score [LZW-WDS]) for non native languages and increases the LID performance considerably. Also the memory and computational requirements of these techniques are much less compared to basic LZW techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information exchange (IE) is a critical component of the complex collaborative medication process in residential aged care facilities (RACFs). Designing information and communication technology (ICT) to support complex processes requires a profound understanding of the IE that underpins their execution. There is little existing research that investigates the complexity of IE in RACFs and its impact on ICT design. The aim of this study was thus to undertake an in-depth exploration of the IE process involved in medication management to identify its implications for the design of ICT. The study was undertaken at a large metropolitan facility in NSW, Australia. A total of three focus groups, eleven interviews and two observation sessions were conducted between July to August 2010. Process modelling was undertaken by translating the qualitative data via in-depth iterative inductive analysis. The findings highlight the complexity and collaborative nature of IE in RACF medication management. These models emphasize the need to: a) deal with temporal complexity; b) rely on an interdependent set of coordinative artefacts; and c) use synchronous communication channels for coordination. Taken together these are crucial aspects of the IE process in RACF medication management that need to be catered for when designing ICT in this critical area. This study provides important new evidence of the advantages of viewing process as a part of a system rather than as segregated tasks as a means of identifying the latent requirements for ICT design and that is able to support complex collaborative processes like medication management in RACFs. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with low maximum-likelihood (ML)-decoding complexity, full-rate and full-diversity space-time block codes (STBCs), which also offer large coding gain, for the 2 transmit antenna, 2 receive antenna (2 x 2) and the 4 transmit antenna, 2 receive antenna (4 x 2) MIMO systems. Presently, the best known STBC for the 2 2 system is the Golden code and that for the 4 x 2 system is the DjABBA code. Following the approach by Biglieri, Hong, and Viterbo, a new STBC is presented in this paper for the 2 x 2 system. This code matches the Golden code in performance and ML-decoding complexity for square QAM constellations while it has lower ML-decoding complexity with the same performance for non-rectangular QAM constellations. This code is also shown to be information-lossless and diversity-multiplexing gain (DMG) tradeoff optimal. This design procedure is then extended to the 4 x 2 system and a code, which outperforms the DjABBA code for QAM constellations with lower ML-decoding complexity, is presented. So far, the Golden code has been reported to have an ML-decoding complexity of the order of for square QAM of size. In this paper, a scheme that reduces its ML-decoding complexity to M-2 root M is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a low-complexity algorithm for detection in high-rate, non-orthogonal space-time block coded (STBC) large-multiple-input multiple-output (MIMO) systems that achieve high spectral efficiencies of the order of tens of bps/Hz. We also present a training-based iterative detection/channel estimation scheme for such large STBC MIMO systems. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed multistage likelihood ascent search (M-LAS) detector in conjunction with the proposed iterative detection/channel estimation scheme at low complexities. The fact that we could show such good results for large STBCs like 16 X 16 and 32 X 32 STBCs from Cyclic Division Algebras (CDA) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot based training for channel estimation and turbo coding) establishes the effectiveness of the proposed detector and channel estimator. We decode perfect codes of large dimensions using the proposed detector. With the feasibility of such a low-complexity detection/channel estimation scheme, large-MIMO systems with tens of antennas operating at several tens of bps/Hz spectral efficiencies can become practical, enabling interesting high data rate wireless applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a low-complexity, near maximum-likelihood (ML) performance achieving detector for large MIMO systems having tens of transmit and receive antennas. Such large MIMO systems are of interest because of the high spectral efficiencies possible in such systems. The proposed detection algorithm, termed as multistage likelihood-ascent search (M-LAS) algorithm, is rooted in Hopfield neural networks, and is shown to possess excellent performance as well as complexity attributes. In terms of performance, in a 64 x 64 V-BLAST system with 4-QAM, the proposed algorithm achieves an uncoded BER of 10(-3) at an SNR of just about 1 dB away from AWGN-only SISO performance given by Q(root SNR). In terms of coded BER, with a rate-3/4 turbo code at a spectral efficiency of 96 bps/Hz the algorithm performs close to within about 4.5 dB from theoretical capacity, which is remarkable in terms of both high spectral efficiency as well as nearness to theoretical capacity. Our simulation results show that the above performance is achieved with a complexity of just O(NtNt) per symbol, where N-t and N-tau denote the number of transmit and receive antennas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Extended Clifford algebras" are introduced as a means to obtain low ML decoding complexity space-time block codes. Using left regular matrix representations of two specific classes of extended Clifford algebras, two systematic algebraic constructions of full diversity Distributed Space-Time Codes (DSTCs) are provided for any power of two number of relays. The left regular matrix representation has been shown to naturally result in space-time codes meeting the additional constraints required for DSTCs. The DSTCs so constructed have the salient feature of reduced Maximum Likelihood (ML) decoding complexity. In particular, the ML decoding of these codes can be performed by applying the lattice decoder algorithm on a lattice of four times lesser dimension than what is required in general. Moreover these codes have a uniform distribution of power among the relays and in time, thus leading to a low Peak to Average Power Ratio at the relays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A half-duplex constrained non-orthogonal cooperative multiple access (NCMA) protocol suitable for transmission of information from N users to a single destination in a wireless fading channel is proposed. Transmission in this protocol comprises of a broadcast phase and a cooperation phase. In the broadcast phase, each user takes turn broadcasting its data to all other users and the destination in an orthogonal fashion in time. In the cooperation phase, each user transmits a linear function of what it received from all other users as well as its own data. In contrast to the orthogonal extension of cooperative relay protocols to the cooperative multiple access channels wherein at any point of time, only one user is considered as a source and all the other users behave as relays and do not transmit their own data, the NCMA protocol relaxes the orthogonality built into the protocols and hence allows for a more spectrally efficient usage of resources. Code design criteria for achieving full diversity of N in the NCMA protocol is derived using pair wise error probability (PEP) analysis and it is shown that this can be achieved with a minimum total time duration of 2N - 1 channel uses. Explicit construction of full diversity codes is then provided for arbitrary number of users. Since the Maximum Likelihood decoding complexity grows exponentially with the number of users, the notion of g-group decodable codes is introduced for our setup and a set of necesary and sufficient conditions is also obtained.