971 resultados para CLOCK GENES EXPRESSION


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: NALP3-inflammasome is an innate mechanism, alternative to type-1 interferon, which is able to recognize nucleic acids and viruses in the cytoplasm and to induce pro-inflammatory response. Here, we hypothesized the involvement of inflammasome in the early defense against HIV-1 and in the full maturation of dendritic cells: for this, we evaluated the response of dendritic cells pulsed with HIV-1 in terms of inflammasome activation in healthy donors. Moreover, inflammasome response to HIV was evaluated in HIV-infected individuals. Design and methods: Monocyte-derived dendritic cells isolated from 20 healthy individuals (HC-DC) and 20 HIV-1-infected patients (HIV-DC) were pulsed with alditrithiol-2-inactivated HIV-1. We then analyzed inflammasome genes expression and interleukin-1 beta (IL-1 beta) secretion. Results: In HC-DC, HIV-1 induced higher NLRP3/NALP3 mRNA expression compared with other inflammasome genes such as NALP1/NLRP1 or IPAF/NLRC4 (P < 0.001). This augmented expression was accompanied by CASP1-increased and IL1B-increased mRNA levels and by a significant increment of IL-1b secretion (P < 0.05). Otherwise, HIV-1 failed to activate inflammasome and cytokine production in HIV-DC. HIV-DC showed an increased NLRP3/NALP3 basal expression, suggesting a chronic inflammatory profile of patients' immune cells. Conclusion: HIV-1 was able to induce a NALP3-inflammasome response in healthy individuals, indicating that this inflammasome could play a role in the first steps of HIV-1 infection; the consequent inflammatory process may be important for directing host immune response against the virus and/or disease progression. HIV-DC seemed to be chronically activated, but unresponsive against pathogens. Our findings could be of interest considering the ongoing research about dendritic cell manipulation and therapeutic strategies for AIDS involving dendritic cell-based immune-vaccines. (C) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: The species of T. harzianum are well known for their biocontrol activity against many plant pathogens. However, there is a lack of studies concerning its use as a biological control agent against F. solani, a pathogen involved in several crop diseases. In this study, we have used subtractive library hybridization (SSH) and quantitative real-time PCR (RT-qPCR) techniques in order to explore changes in T. harzianum genes expression during growth on cell wall of F. solani (FSCW) or glucose. RT-qPCR was also used to examine the regulation of 18 genes, potentially involved in biocontrol, during confrontation between T. harzianum and F. solani. Results: Data obtained from two subtractive libraries were compared after annotation using the Blast2GO suite. A total of 417 and 78 readable EST sequence were annotated in the FSCW and glucose libraries, respectively. Functional annotation of these genes identified diverse biological processes and molecular functions required during T. harzianum growth on FSCW or glucose. We identified various genes of biotechnological value encoding to proteins which function such as transporters, hydrolytic activity, adherence, appressorium development and pathogenesis. Fifteen genes were up-regulated and sixteen were down-regulated at least at one-time point during growth of T. harzianum in FSCW. During the confrontation assay most of the genes were up-regulated, mainly after contact, when the interaction has been established. Conclusions: This study demonstrates that T. harzianum expressed different genes when grown on FSCW compared to glucose. It provides insights into the mechanisms of gene expression involved in mycoparasitism of T. harzianum against F. solani. The identification and evaluation of these genes may contribute to the development of an efficient biological control agent.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The suprachiasmatic nucleus (SCN), which is the main circadian biological clock in mammals, is composed of multiple cells that function individually as independent oscillators to express the self-sustained mRNA and protein rhythms of the so-called clock genes. Knowledge regarding the presence and localization of the proteins and neuroactive substances of the SCN are essential for understanding this nucleus and for its successful manipulation. Although there have been advances in the investigation of the intrinsic organization of the SCN in rodents, little information is available in diurnal species, especially in primates. This study, which explores the pattern of expression and localization of PER2 protein in the SCN of capuchin monkey, evaluates aspects of the circadian system that are common to both primates and rodents. Here, we showed that PER2 protein immunoreactivity is higher during the light phase. Additionally, the complex organization of cells that express vasopressin, vasoactive intestinal polypeptide, neuron-specific nuclear protein, calbindin and calretinin in the SCN, as demonstrated by their immunoreactivity, reveals an intricate network that may be related to the similarities and differences reported between rodents and primates in the literature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Aedes aegypti mosquitoes are the main vectors of dengue viruses. Despite global efforts to reduce the prevalence of dengue using integrated vector management strategies, innovative alternatives are necessary to help prevent virus transmission. Detailed characterizations of Ae. aegypti genes and their products provide information about the biology of mosquitoes and may serve as foundations for the design of new vector control methods. FINDINGS: We studied the Ae. aegypti gene, AAEL010714, that encodes a two-domain odorant-binding protein, AaegOBP45. The predicted gene structure and sequence were validated, although single nucleotide polymorphisms were observed. Transcriptional and translational products accumulate in the ovaries of blood fed females and are not detected or are at low abundance in other tissues. CONCLUSIONS: We validated the Ae. aegypti AAEL010714 gene sequence and characterized the expression profile of a two-domain OBP expressed in ovaries. We propose that AaegOBP45 function as a component of the mosquito eggshell.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

NLRP3-inflammasome activation was evaluated in monocyte-derived dendritic cells (DC) obtained through IL-4 (IL4-DC) or IFN-α (IFN-DC) protocols and pulsed with chemically inactivated HIV-1. Inflammasome' genes expression and IL-1β secretion were compared in DC isolated from 15 healthy subjects (HC) and 10 HIV-1 infected individuals (HIV+). FINDINGS: Whether HIV was able to increased NLRP3-inflammasome genes expression and IL-1β secretion in IL4-DC from HC, the induction of inflammasome appeared significantly reduced in IFN-DC from HC, suggesting a different responsive state of IFN-DC compared to IL4-DC. No inflammasome activation was observed in IL4-DC as well as in IFN-DC derived from HIV + subjects, confirming previous findings on "unresponsive" state of DC derived from HIV + possibly due to chronic inflammatory state of these individuals. CONCLUSIONS: Our results showed that IFN-α differently modulates inflammasome expression during monocytes-DC in vitro differentiation. These findings could be of interest considering the on-going research about DC manipulation and therapeutic strategies for HIV + involving DC-based immune-vaccines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Welche genetische Unterschiede machen uns verschieden von unseren nächsten Verwandten, den Schimpansen, und andererseits so ähnlich zu den Schimpansen? Was wir untersuchen und auch verstehen wollen, ist die komplexe Beziehung zwischen den multiplen genetischen und epigenetischen Unterschieden, deren Interaktion mit diversen Umwelt- und Kulturfaktoren in den beobachteten phänotypischen Unterschieden resultieren. Um aufzuklären, ob chromosomale Rearrangements zur Divergenz zwischen Mensch und Schimpanse beigetragen haben und welche selektiven Kräfte ihre Evolution geprägt haben, habe ich die kodierenden Sequenzen von 2 Mb umfassenden, die perizentrischen Inversionsbruchpunkte flankierenden Regionen auf den Chromosomen 1, 4, 5, 9, 12, 17 und 18 untersucht. Als Kontrolle dienten dabei 4 Mb umfassende kollineare Regionen auf den rearrangierten Chromosomen, welche mindestens 10 Mb von den Bruchpunktregionen entfernt lagen. Dabei konnte ich in den Bruchpunkten flankierenden Regionen im Vergleich zu den Kontrollregionen keine höhere Proteinevolutionsrate feststellen. Meine Ergebnisse unterstützen nicht die chromosomale Speziationshypothese für Mensch und Schimpanse, da der Anteil der positiv selektierten Gene (5,1% in den Bruchpunkten flankierenden Regionen und 7% in den Kontrollregionen) in beiden Regionen ähnlich war. Durch den Vergleich der Anzahl der positiv und negativ selektierten Gene per Chromosom konnte ich feststellen, dass Chromosom 9 die meisten und Chromosom 5 die wenigsten positiv selektierten Gene in den Bruchpunkt flankierenden Regionen und Kontrollregionen enthalten. Die Anzahl der negativ selektierten Gene (68) war dabei viel höher als die Anzahl der positiv selektierten Gene (17). Eine bioinformatische Analyse von publizierten Microarray-Expressionsdaten (Affymetrix Chip U95 und U133v2) ergab 31 Gene, die zwischen Mensch und Schimpanse differentiell exprimiert sind. Durch Untersuchung des dN/dS-Verhältnisses dieser 31 Gene konnte ich 7 Gene als negativ selektiert und nur 1 Gen als positiv selektiert identifizieren. Dieser Befund steht im Einklang mit dem Konzept, dass Genexpressionslevel unter stabilisierender Selektion evolvieren. Die meisten positiv selektierten Gene spielen überdies eine Rolle bei der Fortpflanzung. Viele dieser Speziesunterschiede resultieren eher aus Änderungen in der Genregulation als aus strukturellen Änderungen der Genprodukte. Man nimmt an, dass die meisten Unterschiede in der Genregulation sich auf transkriptioneller Ebene manifestieren. Im Rahmen dieser Arbeit wurden die Unterschiede in der DNA-Methylierung zwischen Mensch und Schimpanse untersucht. Dazu wurden die Methylierungsmuster der Promotor-CpG-Inseln von 12 Genen im Cortex von Menschen und Schimpansen mittels klassischer Bisulfit-Sequenzierung und Bisulfit-Pyrosequenzierung analysiert. Die Kandidatengene wurden wegen ihrer differentiellen Expressionsmuster zwischen Mensch und Schimpanse sowie wegen Ihrer Assoziation mit menschlichen Krankheiten oder dem genomischen Imprinting ausgewählt. Mit Ausnahme einiger individueller Positionen zeigte die Mehrzahl der analysierten Gene keine hohe intra- oder interspezifische Variation der DNA-Methylierung zwischen den beiden Spezies. Nur bei einem Gen, CCRK, waren deutliche intraspezifische und interspezifische Unterschiede im Grad der DNA-Methylierung festzustellen. Die differentiell methylierten CpG-Positionen lagen innerhalb eines repetitiven Alu-Sg1-Elements. Die Untersuchung des CCRK-Gens liefert eine umfassende Analyse der intra- und interspezifischen Variabilität der DNA-Methylierung einer Alu-Insertion in eine regulatorische Region. Die beobachteten Speziesunterschiede deuten darauf hin, dass die Methylierungsmuster des CCRK-Gens wahrscheinlich in Adaption an spezifische Anforderungen zur Feinabstimmung der CCRK-Regulation unter positiver Selektion evolvieren. Der Promotor des CCRK-Gens ist anfällig für epigenetische Modifikationen durch DNA-Methylierung, welche zu komplexen Transkriptionsmustern führen können. Durch ihre genomische Mobilität, ihren hohen CpG-Anteil und ihren Einfluss auf die Genexpression sind Alu-Insertionen exzellente Kandidaten für die Förderung von Veränderungen während der Entwicklungsregulation von Primatengenen. Der Vergleich der intra- und interspezifischen Methylierung von spezifischen Alu-Insertionen in anderen Genen und Geweben stellt eine erfolgversprechende Strategie dar.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A basic, yet challenging task in the analysis of microarray gene expression data is the identification of changes in gene expression that are associated with particular biological conditions. We discuss different approaches to this task and illustrate how they can be applied using software from the Bioconductor Project. A central problem is the high dimensionality of gene expression space, which prohibits a comprehensive statistical analysis without focusing on particular aspects of the joint distribution of the genes expression levels. Possible strategies are to do univariate gene-by-gene analysis, and to perform data-driven nonspecific filtering of genes before the actual statistical analysis. However, more focused strategies that make use of biologically relevant knowledge are more likely to increase our understanding of the data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To understand how the serum amyloid A (SAA) genes are regulated, the cis-acting elements and trans-acting factors involved in the regulation of mouse SAA3 and rat SAA1 genes expression during inflammation were analyzed.^ To identify DNA sequences involved in the liver-specific expression of the mouse SAA3 gene, the 5$\sp\prime$ flanking region of this gene was analyzed by transient transfection studies. Results suggest that C/EBP, a liver-enriched transcription factor, plays an important role for the enhanced expression of the mouse SAA3 gene in hepatocytes.^ Transfection studies of the regulation of the expression of rat SAA1 gene indicated that a 322 bp fragment ($-$304 to +18) of the gene contains sufficient information for cytokine-induced expression of the reporter gene in a liver cell-specific manner. Further functional analysis of the 5$\sp\prime$ flanking region of the rat SAA1 gene demonstrated that a 65 bp DNA fragment ($-$138/$-$73) can confer cytokine-inducibility onto a heterologous promoter both in liver and nonliver cells. DNase I footprint and gel retardation assays identified five putative cis-regulatory elements within the 5$\sp\prime$ flanking region of the gene: one inducible element, a NF$\kappa$B binding site and four constitutive elements. Two constitutive elements, footprint regions I and III, were identified as C/EBP binding sites with region III having over a 10-fold higher affinity for C/EBP binding than region I. Functional analysis of the cis-elements indicated that C/EBP(I) and C/EBP(III) confer liver cell-specific activation onto a heterologous promoter, while sequences corresponding to the NF$\kappa$B element and C/EBP(I) impart cytokine responsiveness onto the heterologous promoter. These results suggest that C/EBP(I) possesses two functions: liver-specific activation and cytokine responsiveness. The identification of two cytokine responsive elements (NF$\kappa$B and C/EBP(I)), and two liver-specific elements (C/EBP(I) and C/EBP(III)) implies that multiple cis-acting elements are involved in the regulation of the expression of the rat SAA1 gene. The tissue-specific and cytokine-induced expression of rat SAA1 gene is likely the result of the interactions of these cis-acting elements with their cognate trans-acting factors as well as the interplay between the different cis-acting elements and their binding factors. (Abstract shortened with permission of author.) ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dormancy is an adaptive mechanism that allows woody plants to survive at low temperatures during the winter. Disruption of circadian clock genes in winter or under low temperatures, both in long days as in short days, were described in our group few years ago (Ramos et al., 2005). Basic mechanisms of the circadian clock function are similar in herbaceous as well as in woody plants although there are differences in their response to low temperatures (Bieniawska et al., 2008). Woody plants growing in daylight conditions should have a specific transcriptional control above the circadian clock genes, which is responsible of their constitutive transcriptional activation observed under low temperatures conditions. In order to understand this regulatory process, we are analyzing the behavior of a circadian clock gene in poplar. To this aim, we have isolated its promoter region and fused to the luciferase reporter gene. This construct has been transformed into Populus tremula x P. alba 717-1B4 INRA clone. Here we present the characterization of these transgenic lines under different conditions of light and temperature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The period (per) gene in Drosophila melanogaster provides an integral component of biological rhythmicity and encodes a protein that includes a repetitive threonine-glycine (Thr-Gly) tract. Similar repeats are found in the frq and wc2 clock genes of Neurospora crassa and in the mammalian per homologues, but their circadian functions are unknown. In Drosophilids, the length of the Thr-Gly repeat varies widely between species, and sequence comparisons have suggested that the repeat length coevolves with the immediately flanking amino acids. A functional test of the coevolution hypothesis was performed by generating several hybrid per transgenes between Drosophila pseudoobscura and D. melanogaster, whose repetitive regions differ in length by about 150 amino acids. The positions of the chimeric junctions were slightly altered in each transgene. Transformants carrying per constructs in which the repeat of one species was juxtaposed next to the flanking region of the other were almost arrhythmic or showed a striking temperature sensitivity of the circadian period. In contrast, transgenes in which the repeat and flanking regions were conspecific gave wild-type levels of circadian rescue. These results support the coevolutionary interpretation of the interspecific sequence changes in this region of the PER molecule and reveal a functional dimension to this process related to the clock’s temperature compensation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Myostatin, a member of the transforming growth factor-β superfamily, is a genetic determinant of skeletal muscle growth. Mice and cattle with inactivating mutations of myostatin have marked muscle hypertrophy. However, it is not known whether myostatin regulates skeletal muscle growth in adult men and whether increased myostatin expression contributes to wasting in chronic illness. We examined the hypothesis that myostatin expression correlates inversely with fat-free mass in humans and that increased expression of the myostatin gene is associated with weight loss in men with AIDS wasting syndrome. We therefore cloned the human myostatin gene and cDNA and examined the gene’s expression in the skeletal muscle and serum of healthy and HIV-infected men. The myostatin gene comprises three exons and two introns, maps to chromosomal region 2q33.2, has three putative transcription initiation sites, and is transcribed as a 3.1-kb mRNA species that encodes a 375-aa precursor protein. Myostatin is expressed uniquely in the human skeletal muscle as a 26-kDa mature glycoprotein (myostatin-immunoreactive protein) and secreted into the plasma. Myostatin immunoreactivity is detectable in human skeletal muscle in both type 1 and 2 fibers. The serum and intramuscular concentrations of myostatin-immunoreactive protein are increased in HIV-infected men with weight loss compared with healthy men and correlate inversely with fat-free mass index. These data support the hypothesis that myostatin is an attenuator of skeletal muscle growth in adult men and contributes to muscle wasting in HIV-infected men.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Herpesviruses exist in two states, latency and a lytic productive cycle. Here we identify an immediate-early gene encoded by Kaposi’s sarcoma-associated herpesvirus (KSHV)/human herpesvirus eight (HHV8) that activates lytic cycle gene expression from the latent viral genome. The gene is a homologue of Rta, a transcriptional activator encoded by Epstein–Barr virus (EBV). KSHV/Rta activated KSHV early lytic genes, including virus-encoded interleukin 6 and polyadenylated nuclear RNA, and a late gene, small viral capsid antigen. In cells dually infected with Epstein–Barr virus and KSHV, each Rta activated only autologous lytic cycle genes. Expression of viral cytokines under control of the KSHV/Rta gene is likely to contribute to the pathogenesis of KSHV-associated diseases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In tomato, Ve is implicated in race-specific resistance to infection by Verticillium species causing crop disease. Characterization of the Ve locus involved positional cloning and isolation of two closely linked inverted genes. Expression of individual Ve genes in susceptible potato plants conferred resistance to an aggressive race 1 isolate of Verticillium albo-atrum. The deduced primary structure of Ve1 and Ve2 included a hydrophobic N-terminal signal peptide, leucine-rich repeats containing 28 or 35 potential glycosylation sites, a hydrophobic membrane-spanning domain, and a C-terminal domain with the mammalian E/DXXXLφ or YXXφ endocytosis signals (φ is an amino acid with a hydrophobic side chain). A leucine zipper-like sequence occurs in the hydrophobic N-terminal signal peptide of Ve1 and a Pro-Glu-Ser-Thr (PEST)-like sequence resides in the C-terminal domain of Ve2. These structures suggest that the Ve genes encode a class of cell-surface glycoproteins with receptor-mediated endocytosis-like signals and leucine zipper or PEST sequences.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Changes in gene expression induced by toxic levels of Al were characterized to investigate the nature of Al stress. A cDNA library was constructed from Arabidopsis thaliana seedlings treated with Al for 2 h. We identified five cDNA clones that showed a transient induction of their mRNA levels, four cDNA clones that showed a longer induction period, and two down-regulated genes. Expression of the four long-term-induced genes remained at elevated levels for at least 48 h. The genes encoded peroxidase, glutathione-S-transferase, blue copper-binding protein, and a protein homologous to the reticuline:oxygen oxidoreductase enzyme. Three of these genes are known to be induced by oxidative stresses and the fourth is induced by pathogen treatment. Another oxidative stress gene, superoxide dismutase, and a gene for Bowman-Birk protease inhibitor were also induced by Al in A. thaliana. These results suggested that Al treatment of Arabidopsis induces oxidative stress. In confirmation of this hypothesis, three of four genes induced by Al stress in A. thaliana were also shown to be induced by ozone. Our results demonstrate that oxidative stress is an important component of the plant's reaction to toxic levels of Al.