980 resultados para CHROMOSOME-ABNORMALITIES
Resumo:
Une caractéristique intéressante de la protéine Bcl-xL est la présence d'un domaine en boucle non-structurée entre les hélices α1 and α2 de la protéine. Ce domaine protéique n'est pas essentiel pour sa fonction anti-apoptotique et absent chez CED-9, la protéine orthologue chez Caenorhabditis elegans. A l'intérieur de ce domaine, Bcl-xL subit une phosphorylation et déphosphorylation dynamique sur les résidus Ser49 et Ser62 en phase G2 du cycle cellulaire et lors de la mitose. Lorsque ces résidus sont mutés et les protéines exprimées dans des cellules cancéreuses, les cellules démontrent plusieurs défauts mitotiques liés à l'instabilité chromosomique. Pour analyser les effets de Bcl-xL Ser49 et Ser62 dans les cellules normales, les présentes études ont été réalisées dans des cellules diploïdes humaines normales, et in vivo chez Caenorhabditis elegans. Dans une première étude, nous avons utilisé la lignée cellulaire de cellules fibroblastiques diploïdes humaines normales BJ, exprimant Bcl-xL (type sauvage), (S49A), (S49D), (S62A), (S62D) et les double (S49/62A) et (S49/62D) mutants. Les cellules exprimant les mutants de phosphorylation ont montré des cinétiques de doublement de la population cellulaire réduites. Ces effets sur la cinétique de doublement de la population cellulaire corrèle avec l'apparition de la sénescence cellulaire, sans impact sur les taux de mort cellulaire. Ces cellules sénescentes affichent des phénotypes typiques de sénescence associés notamment à haut niveau de l'activité β-galactosidase associée à la sénescence, la sécrétion d' interleukine-6, l'activation de p53 et de p21WAF1/ Cip1, un inhibiteur des complexes kinase cycline-dépendant, ainsi que la formation de foyers de chromatine nucléaire associés à γH2A.X. Les analyses de fluorescence par hybridation in situ et des caryotypes par coloration au Giemsa ont révélé que l'expression des mutants de phosphorylation de Bcl-xL provoquent de l'instabilité chromosomique et l'aneuploïdie. Ces résultats suggèrent que les cycles de phosphorylation et déphosphorylation dynamiques de Bcl-xL Ser49 et Ser62 sont importants dans le maintien de l'intégrité des chromosomes lors de la mitose dans les cellules normales. Dans une deuxième étude, nous avons entrepris des expériences chez Caenorhabditis elegans pour comprendre l'importance des résidus Ser49 et Ser62 de Bcl-xL in vivo. Les vers transgéniques portant les mutations de Bcl-xL (S49A, S62A, S49D, S62D et S49/62A) ont été générés et leurs effets ont été analysés sur les cellules germinales des jeunes vers adultes. Les vers portant les mutations de Bcl-xL ont montré une diminution de ponte et d'éclosion des oeufs, des variations de la longueur de leurs régions mitotiques et des zones de transition, des anomalies chromosomiques à leur stade de diplotène, et une augmentation de l'apoptose des cellules germinales. Certaines de ces souches transgéniques, en particulier les variants Ser/Ala, ont également montré des variations de durée de vie par rapport aux vers témoins. Ces observations in vivo ont confirmé l'importance de Ser49 et Ser62 à l'intérieur du domaine à boucle de Bcl-xL pour le maintien de la stabilité chromosomique. Ces études auront une incidence sur les futures stratégies visant à développer et à identifier des composés qui pourraient cibler non seulement le domaine anti-apoptotique de la protéine Bcl-xL, mais aussi son domaine mitotique pour la thérapie du cancer.
Resumo:
Aeschynomene falcata is an important forage species; however, because of low seed production, it is underutilized as forage species. Aeschynomene is a polyphyletic genus with a challenging taxonomic position. Two subgenera have been proposed, and it is suggested that Aeschynomene can be split in 2 genera. Thus, new markers, such as microsatellite sequences, are desirable for improving breeding programs for A. falcata. Based on transferability and in situ localization, these microsatellite sequences can be applied as chromosome markers in the genus Aeschynomene and closely related genera. Here, we report the first microsatellite library developed for this genus; 11 microsatellites were characterized, with observed and expected heterozygosities ranging from 0.0000 to 0.7143 and from 0.1287 to 0.8360, respectively. Polymorphic information content varied from 0.1167 to 0.7786. The departure from Hardy-Weinberg equilibrium may have resulted from frequent autogamy, which is characteristic of A. falcata. Of the 11 microsatellites, 9 loci were cross-amplified in A. brevipes and A. paniculata and 7 in Dalbergia nigra and Machaerium vestitum. Five of these 7 cross-amplified microsatellites were applied as probes during the in situ hybridization assay and 2 showed clear signals on A. falcata chromosomes, ensuring their viability as chromosome markers.
Resumo:
The family Malpighiaceae presents species with different habits, fruit types and cytological characters. Climbers are considered the most derived habit, followed, respectively, by the shrubby and arboreal ones. The present study examines the relationship between basic chromosome numbers and the derivation of climbing habit and fruit types in Malpighiaceae. A comparison of all the chromosome number reports for Malpighiaceae showed a predominance of chromosome numbers based on x=5 or 10 in the genera of sub-family Malpighioideae, mainly represented by climbers with winged fruits, whereas non-climbing species with non-winged fruits, which predominate in sub-family Byrsonimoideae, had counts based on x=6, which is considered the less derived basic number for the family. Based on such data, confirmed by statistic assays, and on the monophyletic origin of this family, we admit the hypothesis that morphological derivation of habit and fruit is correlated with chromosome basic number variation in the family Malpighiaceae.
Resumo:
FISH has been used as a complement to classical cytogenetics in the detection of mosaicism in sex chromosome anomalies. The aim of this study is to describe three cases in which the final diagnosis could only be achieved by FISH. Case 1 was an 8-year-old 46,XY girl with normal female genitalia referred to our service because of short stature. FISH analysis of lymphocytes with probes for the X and Y centromeres identified a 45,X/46,X,idic(Y) constitution, and established the diagnosis of Turner syndrome. Case 2 was a 21-month-old 46,XY boy with genital ambiguity (penile hypospadias, right testis, and left streak gonad). FISH analysis of lymphocytes and buccal smear identified a 45,X/46,XY karyotype, leading to diagnosis of mixed gonadal dysgenesis. Case 3 was a 47,XYY 19-year-old boy with delayed neuromotor development, learning disabilities, psychological problems, tall stature, small testes, elevated gonadotropins, and azoospermia. FISH analysis of lymphocytes and buccal smear identified a 47,XYY/48,XXYY constitution. Cases 1 and 2 illustrate the phenotypic variability of the 45,X/46,XY mosaicism, and the importance of detection of the 45,X cell line for proper management and follow-up. In case 3, abnormal gonadal function could be explained by the 48,XXYY cell line. The use of FISH in clinical practice is particularly relevant when classical cytogenetic analysis yields normal or uncertain results in patients with features of sex chromosome aneuploidy. Arq Bras Endocrinol Metab. 2012;56(8):545-51
Resumo:
Chromosome microdissection is a technique in which whole chromosomes or chromosomal segments are dissected under an inverted microscope yielding chromosome-specific sequences. Several protocol modifications introduced during the past 15 years reduced the number of chromosomes required for most applications. This is of particular interest to fish molecular cytogenetics, since most species present highly uniform karyotypes which make impossible the collection of multiple copies of the same chromosome. Probes developed in this manner can be used to investigate chromosome homologies in closely related species. Here we describe a protocol recently used in the gymnotiform species group Eigenmannia and review the major steps involved in the generation of these markers focusing on protocol modifications aiming to reduce the number of required chromosomes.
Resumo:
Ring chromosomes are often associated with abnormal phenotypes due to loss of genomic material and also because of ring instability at mitosis after sister chromatid exchange events. We investigated ring chromosome instability in six patients with ring chromosomes 4, 14, 15, and 18 by examining 48- and 72-h lymphocyte cultures at the first, second and subsequent cell divisions after bromodeoxyuridine incorporation. Although most cells from all patients showed only one monocentric ring chromosome, ring chromosome loss and secondary aberrations were observed both in 48-and 72-h lymphocyte cultures and in metaphase cells of the different cell generations. We found no clear-cut correlation between ring size and ring instability; we also did not find differences between apparently complete rings and rings with genetic material loss. The cytogenetic findings revealed secondary aberrations in all ring chromosome patients. We concluded that cells with ring chromosome instability can multiply and survive in vivo, and that they can influence the patient's phenotype.
Resumo:
Objective: The striatum, including the putamen and caudate, plays an important role in executive and emotional processing and may be involved in the pathophysiology of mood disorders. Few studies have examined structural abnormalities of the striatum in pediatric major depressive disorder (MDD) patients. We report striatal volume abnormalities in medication-naive pediatric MDD compared to healthy comparison subjects. Method: Twenty seven medication-naive pediatric Diagnostic and Statistical Manual of Mental Disorders, 4(th) edition (DSM-IV) MDD and 26 healthy comparison subjects underwent volumetric magnetic resonance imaging (MRI). The putamen and caudate volumes were traced manually by a blinded rater, and the patient and control groups were compared using analysis of covariance adjusting for age, sex, intelligence quotient, and total brain volumes. Results: MDD patients had significantly smaller right striatum (6.0% smaller) and right caudate volumes (7.4% smaller) compared to the healthy subjects. Left caudate volumes were inversely correlated with severity of depression in MDD subjects. Age was inversely correlated with left and right putamen volumes in MDD patients but not in the healthy subjects. Conclusions: These findings provide fresh evidence for abnormalities in the striatum of medication-naive pediatric MDD patients and suggest the possible involvement of the striatum in the pathophysiology of MDD.
Resumo:
Contemporary anticancer therapies have largely improved the outcome for children with cancer, especially for Acute Lymphoblastic Leukemia (ALL). Actually, between 78% and 85% of patients achieve complete remission and are alive after 5 years of therapy completion. However, as cure rates increase, new concerns about the late effects of genotoxic treatment emerge, being the risk of developing secondary neoplasias, the most serious life-threatening rising problem. In the present paper, we describe and review the cytogenetic findings in peripheral lymphocytes from ALL survivors, and discuss aspects associated to the occurrence of increased chromosome rearrangements in this growing cohort.
Resumo:
Imprinted inactivation of the paternal X chromosome in marsupials is the primordial mechanism of dosage compensation for X-linked genes between females and males in Therians. In Eutherian mammals, X chromosome inactivation (XCI) evolved into a random process in cells from the embryo proper, where either the maternal or paternal X can be inactivated. However, species like mouse and bovine maintained imprinted XCI exclusively in extraembryonic tissues. The existence of imprinted XCI in humans remains controversial, with studies based on the analyses of only one or two X-linked genes in different extraembryonic tissues. Here we readdress this issue in human term placenta by performing a robust analysis of allele-specific expression of 22 X-linked genes, including XIST, using 27 SNPs in transcribed regions. We show that XCI is random in human placenta, and that this organ is arranged in relatively large patches of cells with either maternal or paternal inactive X. In addition, this analysis indicated heterogeneous maintenance of gene silencing along the inactive X, which combined with the extensive mosaicism found in placenta, can explain the lack of agreement among previous studies. Our results illustrate the differences of XCI mechanism between humans and mice, and highlight the importance of addressing the issue of imprinted XCI in other species in order to understand the evolution of dosage compensation in placental mammals.
Resumo:
Exercise training (ET) is a coadjuvant therapy in preventive cardiology. It delays cardiac dysfunction and exercise intolerance in heart failure (HF); however, the molecular mechanisms underlying its cardioprotection are poorly understood. We tested the hypothesis that ET would prevent Ca2+ handling abnormalities and ventricular dysfunction in sympathetic hyperactivity-induced HF mice. A cohort of male wildtype (WT) and congenic (alpha 2A/alpha 2C)-adrenoceptor knockout ((alpha 2A/alpha 2C)ARKO) mice with C57BL6/J genetic background (3-5 mo of age) were randomly assigned into untrained and exercise-trained groups. ET consisted of 8-wk swimming session, 60 min, 5 days/wk. Fractional shortening (FS) was assessed by two-dimensional guided M-mode echocardiography. The protein expression of ryanodine receptor (RyR), phospho-Ser(2809)-RyR, sarcoplasmic reticulum Ca2+ ATPase (SERCA2), Na+/Ca2+ exchanger (NCX), phospholamban (PLN), phospho-Ser(16)-PLN, and phospho-Thr(17)-PLN were analyzed by Western blotting. At 3 mo of age, no significant difference in FS and exercise tolerance was observed between WT and (alpha 2A/alpha 2C)ARKO mice. At 5 mo, when cardiac dysfunction is associated with lung edema and increased plasma norepinephrine levels, (alpha 2A/alpha 2C)ARKO mice presented reduced FS paralleled by decreased SERCA2 (26%) and NCX (34%). Conversely, (alpha 2A/alpha 2C)ARKO mice displayed increased phospho-Ser(16)-PLN (76%) and phospho-Ser(2809)-RyR (49%). ET in (alpha 2A/alpha 2C)ARKO mice prevented exercise intolerance, ventricular dysfunction, and decreased plasma norepinephrine. ET significantly increased the expression of SERCA2 (58%) and phospho-Ser(16)-PLN (30%) while it restored the expression of phospho-Ser(2809)-RyR to WT levels. Collectively, we provide evidence that improved net balance of Ca2+ handling proteins paralleled by a decreased sympathetic activity on ET are, at least in part, compensatory mechanisms against deteriorating ventricular function in HF.
Resumo:
Sclerotinia sclerotiorum is a highly aggressive pathogen that causes great economic losses, especially in temperate climates. Several biological control agents are available, but actinobacteria have seldom been used to control this fungus. Our objective was to evaluate the efficiency and ultrastructural effects of the secondary metabolites produced by the ant-associated actinobacterium Propionicimonas sp. ENT-18 in controlling the sclerotia of S. sclerotiorum. We demonstrated total inhibition of sclerotia treated with 62.5 mu g/10 mu l of an ethyl acetate extract of compounds produced by ENT-18, and calculated an LC(50) of 1.69 mu g/sclerotia. Histological and ultrastructural analysis indicated that the cells of the treated sclerotia were severely damaged, suggesting direct action of the biomolecule(s) produced by the actinobacterium ENT-18 on the cell structure of the medullae and rind cell wall. This is the first report demonstrating a novel property of Propionicimonas sp.-antifungal activity against S. sclerotiorum.
Resumo:
During embryogenesis, one of the two X chromosomes is inactivated in embryos. The production of embryos in vitro may affect epigenetic mechanisms that could alter the expression of genes related to embryo development and X chromosome inactivation (XCI). The aim of this study was to understand XCI during in vitro, pre-implantation bovine embryo development by characterizing the allele-specific expression pattern of the X chromosome-linked gene, monoamine oxidase A (MAOA). Two pools of ten embryos, comprised of the 4-, 8- to 16-cell, morula, blastocyst, and expanded blastocyst stages, were collected. Total RNA from embryos was isolated, and the RT-PCR-RFLP technique was used to observe expression of the MAOA gene. The DNA amplicons were also sequenced using the dideoxy sequencing method. MAOA mRNA was detected, and allele-specific expression was identified in each pool of embryos. We showed the presence of both the maternal and paternal alleles in the 4-, 8-to 16-cell, blastocyst and expanded blastocyst embryos, but only the maternal allele was present in the morula stage. Therefore, we can affirm that the paternal X chromosome is totally inactivated at the morula stage and reactivated at the blastocyst stage. To our knowledge, this is the first report of allele-specific expression of an X-linked gene that is subject to XCI in in vitro bovine embryos from the 4-cell to expanded blastocyst stages. We have established a pattern of XCI in our in vitro embryo production system that can be useful as a marker to assist the development of new protocols for in vitro embryo production. Mol. Reprod. Dev. MoL Reprod. Dev. 77: 615-621, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Background: Oxidative modification of low-density lipoprotein (LDL) has been demonstrated in patients with end-stage renal disease, where it is associated with oxidative stress and plays a key role in the pathogenesis of atherosclerosis. In this context, the generation of minimally oxidized LDL, also called electronegative LDL [ LDL(-)], has been associated with active disease, and is a detectable sign of atherogenic tendencies. The purpose of this study was to evaluate serum LDL(-) levels and anti-LDL(-)IgG autoantibodies in end-stage renal disease patients on dialysis, comparing patients on hemodialysis (HD), peritoneal dialysis (PD) and a control group. In addition, the serum lipid profile, nutritional status, biochemical data and parameters of mineral metabolism were also evaluated. Methods: The serum levels of LDL(-) and anti-LDL(-) IgG autoantibodies were measured in 25 patients undergoing HD and 11 patients undergoing PD at the Centro Integradode Nefrologia, Rio de Janeiro, Brazil. Ten healthy subjects served as a control group. Serum levels of albumin, total cholesterol, triglycerides and lipoproteins were measured. Calculations of subjects` body mass index and measurements of waist circumference, triceps skin fold and arm muscle area were performed. Measurements of hematocrit, serum blood urea nitrogen, creatinine, parathyroid hormone, phosphorus and calcium were taken. Results: Levels of LDL(-) were higher in HD patients (575.6 +/- 233.1 mu g/ml) as compared to PD patients (223.4 +/- 117.5 mu g/ml, p < 0.05), which in turn were higher than in the control group (54.9 +/- 33.3 mu g/ml, p < 0.01). The anti-LDL(-) IgG autoantibodies were increased in controls (0.36 +/- 0.09 mu g/ ml) as compared to PD (0.28 +/- 0.12 mu g/ml, p < 0.001) and HD patients (0.2 +/- 0.1 mu g/ml, p < 0.001). The mean values of total cholesterol and LDL were considered high in the PD group, whereas the mean triceps skin fold was significantly lower in the HD group. Conclusion: Levels of LDL(-) are higher in renal patients on dialysis than in normal individuals, and are reciprocally related to IgG autoantibodies. LDL(-) may be a useful marker of oxidative stress, and this study suggests that HD patients are more susceptible to cardiovascular risk due to this condition. Moreover, autoantibodies reactive to LDL(-) may have protective effects in chronic kidney disease. Copyright (C) 2008 S. Karger AG, Basel.
Resumo:
Lutein (LT) is the second most prevalent carotenoid in human serum, and it is abundantly present in dark, leafy green vegetables. The objectives of this study were to evaluate the genotoxicity and mutagenicity of LT, and its protective effects in vivo against DNA damage and chromosome instability induced by cisplatin (cDDP). For this purpose, we used the comet assay and micronucleus (MN) test, and we evaluated the antioxidant effects of LT by determination of enzymatic (catalase-CAT) and non-enzymatic (reduced glutathione-GSH) activity. Mice were divided into six groups: cDDP, mineral oil (OM), LT groups and LT + cDDP groups. To perform the MN test on peripheral blood (PB) cells, blood samples were collected before the first treatment (T0), and 36 h (T1) and 14 days (T2) after the first treatment. To perform the comet assay, blood samples were collected 4 h after the first and the last treatment. Oxidative capacity was analyzed in total blood that was collected 24 h after the last treatment, when bone marrow (BM) sample was also collected for the MN test. No genotoxic or mutagenic effects of LT were observed for the doses evaluated. We did find that this carotenoid was able to reduce the formation of crosslinks and chromosome instability induced by cDDP. No differences were observed in CAT levels, and LT treatment increased GSH levels compared with a negative control group, reinforcing the role of this carotenoid as an antioxidant.
Resumo:
Bent DNA sites promote the curvature of DNA in both eukaryotic and prokaryotic chromosomes. Here, we investigate the localization and structure of intrinsically bent DNA sites in the extensively characterized Drosophila melanogaster third chromosome DAFC-66D segment (Drosophila amplicon in the follicle cells). This region contains the amplification control element ACE3, which is a replication enhancer that acts in cis to activate the major replication origin ori-beta. Through both electrophoretic and in silico analysis, we have identified three major bent DNA sites in DAFC-66D. The bent DNA site (b1) is localized in the ACE3 element, whereas the other two bent DNA sites (b2 and b3) are localized in the ori-beta region. Four additional bent DNA sites were identified in the intron of the S18 gene and near the TATA box of the S15, S19, and S16 genes. The identification of DNA bent sites in genomic regions previously characterized as functionally relevant for DNA amplification further supports a function for DNA bent sites in DNA replication in eukaryotes.