927 resultados para CHEMICAL DOSEMETERS
Resumo:
Relationships between the chemical composition of the 9th- to 11th-rib section and the chemical composition of the carcass and empty body were evaluated for Bos indicus (108 Nellore and 36 Guzerah; GuS) and tropically adapted Bos taurus (56 Caracu; CaS) bulls, averaging 20 to 24 mo of age at slaughter. Nellore cattle were represented by 56 animals from the selected herd (NeS) and 52 animals from the control herd (NeC). The CaS and GuS bulls were from selected herds. Selected herds were based on 20 yr of selection for postweaning BW. Carcass composition was obtained after grinding, homogenizing, sampling, and analyzing soft tissue and bones. Similarly, empty body composition was obtained after grinding, homogenizing, sampling, analyzing, and combining blood, hide, head + feet, viscera, and carcass. Bulls were separated into 2 groups. Group 1 was composed of 36 NeS, 36 NeC, 36 CaS, and 36 GuS bulls and had water, ether extract (EE), protein, and ash chemically determined in the 9th- to 11th-rib section and in the carcass. Group 2 was composed of 20 NeS, 16 NeC, and 20 CaS bulls and water, EE, protein, and ash were determined in the 9th-to 11th-rib section, carcass, and empty body. Linear regressions were developed between the carcass and the 9th-to 11th-rib section compositions for group 1 and between carcass and empty body compositions for group 2. The 9th-to 11th-rib section percentages of water (RWt) and EE (RF) predicted the percentages of carcass water (CWt) and carcass fat (CF) with high precision: CWt, % = 29.0806 + 0.4873 x RWt, % (r(2) = 0.813, SE = 1.06) and CF, % = 10.4037 + 0.5179 x RF, % (r(2) = 0.863, SE = 1.26), respectively. Linear regressions between percentage of CWt and CF and empty body water (EBWt) and empty body fat (EBF) were also predicted with high precision: EBWt, % = -9.6821 + 1.1626 x CWt, % (r(2) = 0.878, SE = 1.43) and EBF, % = 0.3739 + 1.0386 x CF, % (r(2) = 0.982, SE = 0.65), respectively. Chemical composition of the 9th-to 11th-rib section precisely estimated carcass percentages of water and EE. These regressions can accurately predict carcass and empty body compositions for Nellore, Guzerah, and Caracu breeds.
Resumo:
This study investigated the influence of heat treatment on the chemical composition of Eucalyptus saligna and Pinus caribaea var. hondurensis woods to understand its role in wood processing. E. saligna and P. caribaea var. hondurensis woods were treated in a laboratorial electric furnace at 120, 140, 160 and 180 degrees C to induce their heat treatment. The chemical composition of the resulting products and those from original wood were determined by gas chromatography. Eucalyptus and Pinus showed a significant reduction in arabinose, manose, galactose and xylose contents when submitted to increasing temperatures. No significant alteration in glucose content was observed. Lignin content, however, increased during the heat process. There was a significant reduction in extractive content for Eucalyptus. On the other hand, a slight increase in extractive content has been determined for the Pinus wood. and that only for the highest temperature. These different behaviors can be explained by differences in chemical constituents between softwoods and hardwoods. The results obtained in this study provide important information for future research and utilization of thermally modified wood. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Sensory analysis is one of the most suitable processes for measuring oxidative damage and determining the shelf-life of nuts, but it is an expensive and time-consuming methodology. Thus, our objective was to correlate sensory data and chemical markers obtained during the accelerated oxidation of Brazil nuts and to determine the chemical parameters values associated with the sensory shelf-life of the nuts as established by the consumers. Brazil nuts were kept at 80 A degrees C for 21 days. At intervals of 2 days, the oxidized odor of the samples was analyzed by nine trained panelists using a discriminative scale, and the oil was extracted to quantify the chemical parameters. A high (r > 0.95) and significant correlation (p < 0.05) was observed between the sensory data and the hydroperoxide concentration (PV), para-anisidine value (pAV), hexanal content, and alpha- and gamma-tocopherol concentrations. When compared with fresh samples, sensory identification of oxidized odor occurred on the 4th day, noticeably earlier than changes in chemical markers (12th day). Consumers rejected the nuts after 12 days of storage, which corresponded to PV = 18.8 meq kg(-1) oil, pAV = 7.68, hexanal = 48.95 mu mol 100 g(-1) oil, alpha-tocopherol = 15.01 mg kg(-1) oil, and gamma + beta-tocopherol = 73.88 mg kg(-1) oil. Our study suggests that simple spectrometric methods, such as PV and pAV, can be used to estimate the oxidative shelf-life of nuts based on sensory analysis.
Resumo:
Pectin can be used as a natural emulsifier in food formulations. In this study, textured soybean protein (TSP), used as an emulsifier in commercial sausages, was partially replaced by a mixture containing pectin and isolated soybean proteins, which were either extruded (EXT) or not extruded (MIX), and the chemical and sensory characteristics of samples were evaluated after 60 days of storage at 4 degrees C. Responses such as oxidation measured by PV and TBARS, hardness, color, pH and sensory characteristics were compared with those of a commercial sausage (CON). The mixture containing highly methyl-esterified pectin, textured soybean proteins and isolated soybean proteins, as emulsifier agent, reduced the hardness (EXT: 21.69 +/- 0.98 and MIX: 20.17 +/- 2.76 N) and the pH (EXT: 5.46 +/- 0.03 and MIX: 5.29 +/- 0.01) of the samples and increased the concentration of peroxides (EXT: 0.10 +/- 0.01 and MIX: 0.15 +/- 0.01 meq/kg) when compared with samples formulated only with TSP (28.57 +/- 2.54 N, pH of 6.92 +/- 0.04 and PV = 0.07 +/- 0.01 meq/kg). These effects were likely caused by the anionic character of the emulsifier. However, no sensory difference was observed between the sausages containing highly methyl-esterified pectin, textured soybean proteins and isolated soybean proteins submitted to the extrusion process (EXT) and the control sausages, suggesting that the formulation proposed in this study can be a potential alternative for the further development of sausages that have functional properties or are free of artificial additives.
Resumo:
Foods provide essential and bioactive compounds with health-promoting properties such as antioxidant, anti-inflammatory, and hypocholesterolemic activities, which have been related to vitamins A, C, and E and phenolic compounds such as flavonoids. Therefore, the aim of this work was to identify potential sources of bioactive compounds through the determination of flavonoids and ellagic acid contents and the in vitro antioxidant capacity and alpha-glucosidase and alpha-amylase inhibitory activities of Brazilian native fruits and commercial frozen pulps. Camu-camu, cambuci, uxi, and tucuma and commercial frozen pulps of cambuci, cagaita, coquinho azedo, and araca presented the highest antioxidant capacities. Cambuci and cagaita exhibited the highest alpha-glucosidase and alpha-amylase inhibitory activities. Quercetin and kaempferol derivatives were the main flavonoids present in most of the samples. Ellagic acid was detected only in umbu, camu-camu, cagaita, araca, and cambuci. According to the results, native Brazilian fruits can be considered as excellent sources of bioactive compounds.
Resumo:
Banana flour obtained from unripe banana (Musa acuminata, var. Nanico) under specific drying conditions was evaluated regarding its chemical composition and nutritional value. Results are expressed in dry weight (dw). The unripe banana flour (UBF) presented a high amount of total dietary fiber (DF) (56.24 g/100 g), which consisted of resistant starch (RS) (48.99 g/100 g), fructans (0.05 g/100 g) and DF without RS or fructans (7.2 g/100 g). The contents of available starch (AS) (27.78 g/100 g) and soluble sugars (1.81 g/100 g) were low. The main phytosterols found were campesterol (4.1 mg/100 g), stigmasterol (2.5 mg/100 g) and beta-sitosterol (6.2 mg/100 g). The total polyphenol content was 50.65 mg GAE/100 g. Antioxidant activity, by the FRAP and ORAC methods, was moderated, being 358.67 and 261.00 mu mol of Trolox equivalent/100 g, respectively. The content of Zn, Ca and Fe and mineral dialyzability were low. The procedure used to obtain UBF resulted in the recovery of undamaged starch granules and in a low-energy product (597 kJ/100 g).
Resumo:
The starch of maca (Lepidium meyenii Walpers) presented oval and irregular morphology, with granule size between 7.4 and 14.9 mu m in length and 5.8 and 9.3 mu m in diameter. The isolated starch showed the following features: purity of 87.8%, with 0.28% lipids, 0.2% fibre and 0.12% fixed mineral residue, and no protein detected; the ratio between the amylose and amylopectin contents were 20:80: the solubility at 90 degrees C was 61.4%, the swelling power was 119.0g water/g starch and the water absorption capacity was 45.9 g water/g starch; the gel turbidity rose 44% during the storing time; the gelatinization temperature was 47.7 degrees C and the transition enthalpy 6.22 J/g; the maximum viscosity reached 1260 UB at 46.4 degrees C, with breakdown, setback and consistence of 850, 440 and -410 UB, respectively. The low gelling temperature and the stability during gel refrigeration could be adequate for foods requiring moderate temperature process, but not for frozen food. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Samples of fruit from the jussara palm plant (Euterpe edulis), collected in different regions of the state of Santa Catarina. Brazil, were analyzed for chemical composition. phenolic acids. anthocyanins, flavonoids and fatty acids profile. Results indicated that the jussara fruit has a high lipid content (18.45-44.08%), oleic acid (44.17-55.61%) and linoleic acid (18.19-25.36%) are the fatty acids found in the highest proportion, and other components were proteins (5.13-8.21%). ash (1.55-3.32%) and moisture (34.95-42.47%). Significant differences were found in the total phenolic, total monomeric anthocyanins and other flavonoids for the samples from the five cultivation regions. The fruit from region E harvested in summer, with high temperatures and medium altitudes, had the highest contents of total phenolics (2610.86 +/- 3.89 mg 100 g(-1) GAE) and monomeric anthocyanins (1080.54 +/- 2.33 mg 100g(-1) cy-3-glu). The phenolic compound included ferulic, gallic, hydroxybenzoic and p-coumaric acids, as well as catechin, epicatechin and quercetin. The results show promising perspectives for the exploitation of this tropical fruit with a chemical composition comprising considerable phenolic acids and flavonoids compounds and showing activity antioxidant. (C) 2010 Published by Elsevier Ltd.
Resumo:
Focusing on the therapeutic and cosmetic potentials of the thermal water, several processes were developed to achieve a raw material known as fango which presents in its constitution water, clay and organic soil. This research work aimed at characterizing turf, sulphur mud and fango from Araxa, MG, Brazil, through physical, physicochemical, inorganic and organic assessments for cosmetic and topical product proposes. The characterization permitted the determination of relevant parameters to suggest the efficacy (presence, of ions) and safety (absence of toxic metals) of those raw materials for cosmetic and pharmaceutical utilization.
Resumo:
Interesterification of palm stearin (PS) with liquid vegetable oils could yield a good solid fat stock that may impart desirable physical properties, because PS is a useful source of vegetable hard fat, providing beta` stable solid fats Dietary ingestion of olive oil (OO) has been reported to have physiological benefits such as lowering serum cholesterol levels Fat blends, formulated by binary blends of palm stearin and olive oil in different ratios, were subjected to chemical interesterification with sodium methoxide The original and interesterified blends were examined for fatty acid and triacylglycerol composition, melting point, solid fat content (SFC) and consistency. Interestenfication caused rearrangement of triacylglycerol species, reduction of trisaturated and triunsaturated triacylglycerols content and increase in diunsaturated-monosaturated triacylglycerols of all blends, resulting in lowering of melting point and solid fat content The incorporation of OO to PS reduced consistency, producing more plastic blends The mixture and chemical interesterification allowed obtaining fats with various degrees of plasticity, increasing the possibilities for the commercial use of palm stearin and olive oil (C) 2009 Elsevier Ltd All rights reserved
Resumo:
Chemical interesterification is an important technological option for the production of fats targeting commercial applications. Fat blends, formulated by binary blends of palm stearin and palm olein in different ratios, were subjected to chemical interesterification. The following determinations, before and after the interesterification reactions, were done: fatty acid composition, softening point, melting point, solid fat content and consistency. For the analytical responses a multiple regression statistical model was applied. This study has shown that blending and chemical interesterifications are an effective way to modify the physical and chemical properties of palm stearin, palm olein and their blends. The mixture and chemical interesterification allowed obtaining fats with various degrees of plasticity, increasing the possibilities for the commercial use of palm stearin and palm olein. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This work evaluated chemical interesterification of canola oil (CaO) and fully hydrogenated cottonseed oil (FHCSO) blends, with 20%, 25%, 30%, 35% and 40%(w/w) FHCSO content. Interesterification produced reduction of trisaturated and increase in monounsaturated and diunsaturated triacylglycerols contents, which caused important changes in temperatures and enthalpies associated with the crystallization and melting thermograms. It was verified reduction in medium crystal diameter in all blends, in addition crystal morphology modification. Crystallization kinetics revealed that crystal formation induction period and maximum solid fat content were altered according to FHCSO content in original blends and as a result of random rearrangement. Changes in Avrami constant (k) and exponent (n) indicated, respectively, that interesterification decreased crystallization rates and altered crystalline morphology. However, X-ray diffraction analyses showed randomization did not change the original crystalline polymorphism. The original and interesterified blends had significant predominance of beta` polymorph, which is interesting for several food applications. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The main goal of the present research effort was to evaluate the physical-chemical properties of blends of lard and soybean oil following enzymatic interesterification catalyzed by an immobilized lipase from Thermomyces lanuginosa (Lipozyme (TM) TL IM). Lipase-catalyzed interesterification produced new tri-acylglycerols that changed the physical-chemical properties of the fat blends under study. Solid fat content (31.3 vs 31.5 g/100 g), consistency (104.7 vs 167.6 kPa), crystallized area (0.6 vs 11.8) and softening point (31.8 vs 32.2 degrees C) of lard increased after interesterification, and this was mostly due to the increase of SSS (saturated) + SSU (disaturated-monounsaturated) triacylglycerols. These contents (SSU + SSS) increased in lard after interesterification from 42.9 to 46.7 g/100 g. The interesterified blends exhibited lower values for the physical properties when compared with their counterparts before enzymatic interesterification. The interesterification of blends of lard with soybean oil increased the amounts of UUU (triunsaturated) and SSS triacylglycerols and reduced the amounts of UUS (diunsaturated-monosaturated) triacylglycerols. The interesterified blends of lard and soybean oil demonstrated physical properties and chemical composition similar to human milk fat and they could be used for the production of a human milk fat substitute. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Blends of canola oil (CO) and fully hydrogenated cottonseed oil (FHCSO), with 20, 25, 30, 35 and 40% FHCSO (w/w) were interesterified under the following conditions: 0.4% sodium methoxide, 500 rpm stirring, 100C, 20 min. The original and interesterified blends were examined for triacylglycerol composition, melting point, solid fat content (SFC) and consistency. Interesterification caused considerable rearrangement of triacylglycerol species, reduction of trisaturated triacylglycerol content and increase in disaturated-monounsaturated and monosaturated-diunsaturated triacylglycerols in all blends, resulting in lowering of respective melting points. The interesterified blends showed reduced SFC at all temperatures and more linear melting profiles if compared with the original blends. Consistency, expressed as yield value, significantly decreased after the reaction. Iso-solid curves indicated eutectic interactions for the original blends, which were eliminated after randomization. The 80:20, 75:25, 70:30 and 65:35 (w/w) CO: FHCSO interesterified blends showed characteristics which are appropriate for their application as soft margarines, spreads, fat for bakery/all-purpose shortenings, and icing shortenings, respectively. PRACTICAL APPLICATIONS Recently, a number of studies have suggested a direct relationship between trans isomers and increased risk of vascular disease. In response, many health organizations have recommended reducing consumption of foods containing trans fatty acids. In this connection, chemical interesterification has proven the main alternative for obtaining plastic fats that have low trans isomer content or are even trans isomer free. This work proposes to evaluate the chemical interesterification of binary blends of canola oil and fully hydrogenated cottonseed oil and the specific potential application of these interesterified blends in food products.
Resumo:
Blends of soybean oil (50) and fully hydrogenated soybean oil (FHSBO), with 10%, 20%, 30%, 40% and 50% FHSBO (w/w) content were interesterified under the following conditions: 0.4% sodium methoxide, 500 rpm stirring, 100 degrees C, 20 min. The original and interesterified blends were examined for triacylglycerol composition, melting point, solid fat content (SFC) and consistency. Interesterification caused considerable rearrangement of triacylglycerol species, reduction of trisaturated triacylglycerol content and increase in monounsaturated and diunsaturated triacylglycerols, resulting in lowering of respective melting points. The interesterified blends displayed reduced SFC at all temperatures and more linear melting profiles as compared with the original blends. Yield values showed increased plasticity in the blends after the reaction. Isosolid diagrams before and after the reaction showed no eutectic interactions. The 90:10, 80:20, 70:30 and 60:40 interesterified SO:FHSBO blends displayed characteristics suited to application, respectively, as liquid shortening, table margarine, baking/confectionery fat and all-purpose shortenings/biscuit-filing base. (C) 2009 Elsevier Ltd. All rights reserved.