214 resultados para CFRP invecchiamento
Phased Nonlinear Finite Element Analysis of Precracked RC T-Beams Repaired in Shear with CFRP Sheets
Resumo:
Carbon fiber reinforced polymer (CFRP) bars were prestressed for the structural strengthening of 8 T-shaped reinforced concrete (RC) beams of a 21-year-old bridge in China. The ultimate bearing capacity of the existing bridge after retrofit was discussed on the basis of concrete structures theory. The flexural strengths of RC beams strengthened with CFRP bars were controlled by the failure of concrete in compression and a prestressing method was applied in the retrofit. The field construction processes of strengthening with CFRP bars—including grouting cracks, cutting groove, grouting epoxy and embedding CFRP bars, surface treating, banding with the U-type CFRP sheets, releasing external prestressed steel tendons—were introduced in detail. In order to evaluate the effectiveness of this strengthening method, field tests using vehicles as live load were applied before and after the retrofit. The test results of deflection and concrete strain of the T-shaped beams with and without strengthening show that the capacity of the repaired bridge, including the bending strength and stiffness, is enhanced. The measurements of crack width also indicate that this strengthening method can enhance the durability of bridges. Therefore, the proposed strengthening technology is feasible and effective.
Resumo:
This paper describes the fractographic analysis of five CFRP post-buckled skin/stringer panels that were tested to failure in compression. The detailed damage mechanisms for skin/stiffener detachment in an undamaged panel were characterised and related to the stress conditions during post-buckling; in particular the sites of peak twist (at buckling nodes) and peak bending moments (at buckling anti-nodes). The initial event was intralaminar splitting of the +45 degrees plies adjacent to the skin/stiffener interface, induced by high twist at a nodeline. This was followed by mode II delamination, parallel to +/- 45 degrees plies and then lengthwise (0 degrees) shear along the stiffener centreline. The presence of defects or damage was found to influence this failure process, leading to a reduction in strength. This research provides an insight into the processes that control post-buckled performance of stiffened panels and suggests that 2D models and element tests do not capture the true physics of skin/stiffener detachment: a full 3D approach is required.
Resumo:
The finite element method in conjunction with the Soutis-Fleck model is used to predict the residual strength after impact of a carbon-fibre reinforced plastic wingbox subjected to a cantilever type loading. The maximum stress failure criterion further validates the Soutis-Fleck model predictions. The Soutis-Fleck model predicts that the wingbox fails at a tip load of 99.2 kN, approximately 5.5% less than the experimental observation
Resumo:
The use of hybrid materials including carbon fiber reinforced plastics (CFRPs) and lightweight metals such as titanium are increasing particularly in aerospace applications. Multi-material stacks require a number of holes for the assembly purposes. In this research, drilling trials have been carried out in CFRP, Ti-6Al-4V and CFRP/Ti-6Al-4V stack workpieces using AlTiN coated tungsten carbide drill bit. The effects of process parameters have been investigated. The thrust force, torque, burr formation, delamination, surface roughness and tool wear have been analyzed at various processing condition. The experimental results have shown that the thrust force, torque, burr formation and the average surface roughness increase with the increased feed rate and decrease with the increased cutting speed in drilling of Ti-6Al-4V. In drilling CFRP, delamination and the average surface roughness has similar tendency with the cutting parameters however thrust force and torque rises with the increased cutting speed. The results showed that after making 15 holes in CFRP/Ti-6Al-4V stack, measured thrust forces were increased by 20% in CFRP and by 45% in Ti-6Al-4V. Delamination was found to be much smaller in drilling of CFRP in stack from compared to drilling single CFRP. Tool life was significantly shortened in drilling of stack due to the combination of the wear mechanisms.
Resumo:
Features of chip formation can inform the mechanism of a machining process. In this paper, a series of orthogonal cutting experiments were carried out on unidirectional carbon fiber reinforced polymer (UD-CFRP) under cutting speed of 0.5 m/min. The specially designed orthogonal cutting tools and high-speed camera were used in this paper. Two main factors are found to influence the chip morphology, namely the depth of cut (DOC) and the fiber orientation (angle 휃), and the latter of which plays a more dominant role. Based on the investigation of chip formation, a new approach is proposed for predicting fracture toughness of the newly machined surface and the total energy consumption during CFRP orthogonal cutting is introduced as a function of the surface energy of machined surface, the energy consumed to overcome friction, and the energy for chip fracture. The results show that the proportion of energy spent on tool-chip friction is the greatest, and the proportions of energy spent on creating new surface decrease with the increasing of fiber angle.
Resumo:
This article examines the effectiveness of two innovative retrofitting solutions at enhancing the seismic behaviour of a substandard reinforced concrete building tested on a shake table as part of the Pan-European funded project BANDIT. To simulate typical substandard construction, the reinforcement of columns and beam-column joints of the full-scale structure had inadequate detailing. An initial series of shake table tests were carried out to assess the seismic behaviour of the bare building and the effectiveness of a first retrofitting intervention using Post-Tensioned Metal Straps. After these tests, columns and joints were repaired and subsequently retrofitted using a retrofitting solution consisting of Carbon Fibre Reinforced Polymers and Post-Tensioned Metal Straps applied on opposite frames of the building. The building was then subjected to unidirectional and three-dimensional incremental seismic excitations to assess the effectiveness of the two retrofitting solutions at improving the global and local building performance. The article provides details of the above shake table testing programme and retrofitting solutions, and discusses the test results in terms of the observed damage, global damage indexes, performance levels and local strains. It is shown that whilst the original bare building was significantly damaged at a peak ground acceleration (PGA) of 0.15g, the retrofitted building resisted severe threedimensional shake table tests up to PGA=0.60g without failure. Moreover, the retrofitting intervention enhanced the interstorey drift ratio capacity of the 1st and 2nd floors by 160% and 110%, respectively. Therefore, the proposed dual retrofitting system is proven to be very effective for improving the seismic performance of substandard buildings.
Resumo:
This work addresses both experimental and numerical analyses regarding the tensile behaviour of CFRP single-strap repairs. Two fundamental geometrical parameters were studied: overlap length and patch thickness. The numerical model used ABAQUS® software and a developed cohesive mixed-mode damage model adequate for ductile adhesives, and implemented within interface finite elements. Stress analyses and strength predictions were carried out. Experimental and numerical comparisons were performed on failure modes, failure load and equivalent stiffness of the repair. Good correlation was found between experimental and numerical results, showing that the proposed model can be successfully applied to bonded joints or repairs.