977 resultados para CFRP aging composite thermal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The load bearing capacity of aging reinforced concrete structures, such as bridges, is increasingly extended with the use of Carbon Fibre Reinforced Polymer (CFRP). Premature failure, which is attributed to the rigid behaviour of the bonding agent (epoxy resin) and the high stresses at the interface region, can occur because of the debonding of CFRP sheets from host surfaces. To overcome the debonding issue, the epoxy resin is modified by different reactive liquid polymers to improve its toughness, flexibility, adhesion, and impact resistance. This study reports the usage of two reactive liquid polymers, namely, liquid Carboxyl-Terminated Butadiene-Acrylonitrile (CTBN) and liquid Amine-Terminated Butadiene-Acrylonitrile (ATBN), to improve the mechanical properties of the commercially available MBrace saturant resin when added to a ratio of 100:30 by weight. The neat and modified epoxies were analysed using the Dynamic Mechanical Thermal Analysis (DMTA) to determine and compare the storage modulus and glass transition temperatures of these materials. Moreover, the bonding strength of neat and modified epoxies was evaluated through single-lap shear tests on CFRP sheets bonded to concrete prisms. The results indicate that the modified resins exhibited improved ductility and toughness and became reasonably flexible compared with the neat epoxy resin. The improved properties will help delay the premature debonding failure in CFRP retrofitted concrete members.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thermal decomposition of ammonium perchlorate (AP)/hydroxyl-terminated-polybutadiene (HTPB), the AP/HTPB solid propellant, was studied at different heating rates in dynamic nitrogen atmosphere. The exothermic reaction kinetics was studied by differential scanning calorimetry (DSC) in non-isothermal conditions. The Arrhenius Parameters were estimated according to the Ozawa method. The calculated activation energy was 134.5 W mol(-1), the pre-exponential factor, A, was 2.04.10(10) min(-1) and the reaction order for the global composite decomposition was estimated in 0.7 by the kinetic Shimadzu software based on the Ozawa method. The Kissinger method for obtaining the activation energy value was also used for comparison. These results are discussed here.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cellulose-phosphate composite membranes have been prepared from bacterial cellulose membranes ( BC) and sodium polyphosphate solution. The structure and thermal behavior of the new composites were evaluated by X-ray diffraction (XRD), P-31-nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetry (TG) and thermomechanical analysis (TMA). From XRD analyses the I alpha and I beta cellulose crystalline phases were identified together with crystalline sodium phosphate that covers the cellulose microfibrils as revealed by SEM. P-31 NMR spectra show peaks assigned to Q(0) and Q(1) phosphate structures to be compared to the Q(2) units that characterize the precursor polyphosphate. Glass transition temperature, T-g, obtained from TMA curves and thermal stability obtained from TG and DSC measurements, were observed to be dependent on the phosphate content.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives. This study evaluated the effect of two different surface conditioning methods on the repair bond strength of a bis-GMA-adduct/bis-EMA/TEGDMA based resin composite after three aging conditions.Methods. Thirty-six composite resin blocks (Esthet X, Dentsply) were prepared (5 mm x 6 mm x 6 mm) and randomly assigned into three groups for aging process: (a) immersion in citric acid (pH 3.0 at 37 degrees C, 1 week) (CA); (b) boiling in water for 8h (BW) and (c) thermocycling (x5000, 5-55 degrees C, dwell time: 30s) (TC). After aging, the blocks were assigned to one of the following surface conditioning methods: (1) silica coating (30 mu m SiOx) (CoJet, 3M ESPE) + silane (ESPE-Sil) (CJ), (2) phosphoric acid + adhesive resin (Single Bond, 3M ESPE) (PA). Resin composite (Esthet.X (R)) was bonded to the conditioned substrates incrementally and light polymerized. The experimental groups formed were as follows: Gr1:CA + PA; Gr2:CA + CJ Gr3:BW + PA; Gr4: BW + CJ; Gr5:TC + PA; Gr6: TC + CJ. The specimens were sectioned in two axes (x and y) with a diamond disc under coolant irrigation in order to obtain non-trimmed bar specimens (sticks, 10 mm x 1 mm x 1 mm) with 1 mm(2) of bonding area. The microtensile test was accomplished in a universal testing machine (crosshead speed: 0.5 mm min(-1)).Results. The means and standard deviations of bond strength (MPa +/- S.D.) per group were as follows: Gr1: 25.5 +/- 10.3; Gr2: 46.3 +/- 10.1; Gr3: 21.7 +/- 7.1; Gr4: 52.3 +/- 15.1; GrS: 16.1 +/- 5.1; Gr6, 49.6 +/- 13.5. The silica coated groups showed significantly higher mean bond values after all three aging conditions (p < 0.0001) (two-way ANOVA and Tukey tests, alpha = 0.05). The interaction effect revealed significant influence of TC aging on both silica coated and acid etched groups compared to the other aging methods (p < 0.032). Citric acid was the least aggressive aging medium.Significance. Chairside silica coating and silanization provided higher resin-resin bond strength values compared to acid etching with phosphoric acid followed by adhesive resin applications. Thermocycling the composite substrates resulted in the lowest repair bond strength compared to citric acid challenge or boiling in water. (C) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: The purpose of the current study was to evaluate different approaches for bonding composite to the surface of yttria stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics.Methods: One hundred Y-TZP blocks were embedded in acrylic resin, had the free surface polished, and were randomly divided into 10 groups (n=10). The tested repair approaches included four surface treatments: tribochemical silica coating (TBS), methacryloxydecyldihidrogenphosphate (MDP)-containing primer/silane, sandblasting, and metal/zirconia primer. Alcohol cleaning was used as a "no treatment" control. Surface treatment was followed by the application (or lack thereof) of an MDP-containing resin cement liner. Subsequently, a composite resin was applied to the ceramic surface using a cylindrical mold (4-mm diameter). After aging for 60 days in water storage, including 6000 thermal cycles, the specimens were submitted to a shear test. Analysis of variance and the Tukey test were used for statistical analyses (alpha=0.05).Results: Surface treatment was a statistically significant factor (F=85.42; p<0.0001). The application of the MDP-containing liner had no effect on bond strength (p=0.1017). TBS was the only treatment that had a significantly positive effect on bond strength after aging.Conclusion: Considering the evaluated approaches, TBS seems to be the best surface treatment for Y-TZP composite repairs. The use of an MDP-containing liner between the composite and Y-TZP surfaces is not effective.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: To evaluate the effects of simulated aging in bond strength and nanoleakage of class II restorations using three different restorative techniques. Materials and methods: Class II preparations (n = 12) were restored using: FS - composite resin Filtek Supreme Plus (3M/ESPE); RMGIC + FS - resin-modified glass ionomer cement Vitrebond Plus (3M/ESPE) + FS; and FFS + FS - flowable composite resin Filtek Supreme Plus Flowable (3M ESPE) + FS. The teeth were assigned into two groups: Control and Simulated Aging - Thermal/Mechanical cycling (3,000 cycles, 20-80 °C/500,000 cycles, 50 N). From each tooth, two slabs were assessed to microtensile bond strength test (μTBS) (MPa), and two slabs were prepared for nanoleakage assessment, calculated as penetration along the restoration margin considering the penetration length (%) and as the area of silver nitrate particle deposition (μm2). Data were analyzed by two-way analysis of variance (ANOVA) followed by Tukey's post hoc test (p < 0. 05). Results: FS presented the highest μTBS to dentin (22. 39 ± 7. 55 MPa) after simulated aging, while the presence of flowable resin significantly decreased μTBS (14. 53 ± 11. 65 MPa) when compared to no aging condition. Both control and aging groups of RMGIC + FS presented the highest values of silver nitrate penetration (89. 90 ± 16. 31 % and 97. 14 ± 5. 76 %) and deposition area (33. 05 ± 12. 49 and 28. 08 ± 9. 76 μm2). Nanoleakage was not affected by simulated aging. Conclusions: FS presented higher bond strength and lower nanoleakage and was not affected by simulated aging. Use of flowable resin compromised the bond strength after simulated aging. Clinical relevance: The use of an intermediate layer did not improve the dentin bond strength neither reduced nanoleakage at the gingival margins of class II restorations under simulated aging conditions. © 2012 Springer-Verlag.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Composite films made of lead zirconate titanate ceramic particles coated with polyaniline and poly(vinylidene fluoride) - PZT-PAni/PVDF were produced by hot pressing the powder mixtures in the desired ceramic volume fraction. The ceramic particles were coated during the polyaniline synthesis and the conductivity of the conductor polymer was controlled by different degrees of protonation. Composites were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), ac and dc electrical measurements, the longitudinal d33 piezo coefficient and the photopyroelectric response. Results showed that the presence of PAni increased the dielectric permittivity of the composite and allowed better efficiency in the poling process, which increased the piezo- and pyroelectric activities of the composite film and reduced both the poling time and the poling electric field. The thermal sensing of the material was also analyzed, showing that this composite can be used as pyroelectric sensor. © 2013 IOP Publishing Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: The purpose of this study was to assess the influence of conditioning methods and thermocycling on the bond strength between composite core and resin cement. Material and Methods: Eighty blocks (8x8x4 mm) were prepared with core build-up composite. The cementation surface was roughened with 120-grit carbide paper and the blocks were thermocycled (5,000 cycles, between 5 degrees C and 55 degrees C, with a 30 s dwell time in each bath). A layer of temporary luting agent was applied. After 24 h, the layer was removed, and the blocks were divided into five groups, according to surface treatment: (NT) No treatment (control); (SP) Grinding with 120-grit carbide paper; (AC) Etching with 37% phosphoric acid; (SC) Sandblasting with 30 mm SiO2 particles, silane application; (AO) Sandblasting with 50 mu m Al2O3 particles, silane application. Two composite blocks were cemented to each other (n=8) and sectioned into sticks. Half of the specimens from each block were immediately tested for microtensile bond strength (mu TBS), while the other half was subjected to storage for 6 months, thermocycling (12,000 cycles, between 5 degrees C and 55 degrees C, with a dwell time of 30 s in each bath) and mu TBS test in a mechanical testing machine. Bond strength data were analyzed by repeated measures two-way ANOVA and Tukey test (alpha=0.05). Results: The mu TBS was significantly affected by surface treatment (p=0.007) and thermocycling (p=0.000). Before aging, the SP group presented higher bond strength when compared to NT and AC groups, whereas all the other groups were statistically similar. After aging, all the groups were statistically similar. SP submitted to thermocycling showed lower bond strength than SP without thermocycling. Conclusion: Core composites should be roughened with a diamond bur before the luting process. Thermocycling tends to reduce the bond strength between composite and resin cement.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this research was to evaluate the effect of postpolymerization method on the color stability of resin-based composites. Samples of direct and indirect restorative materials were polymerized with two photo-curing units (Visio photo-curing oven system and LED Elipar Freelight 2). All samples were submitted to an initial chromatic analysis using a spectrometer and submitted to ultraviolet-accelerated artificial aging. The direct material showed less color change than the indirect material, independent of the photo-activation method used. Samples photo cured with the LED system showed less change than those photo cured with the Visio system. The postpolymerization oven did not improve the color stability of direct and indirect resin-based composites.