899 resultados para CEREBROVASCULAR TONE
Resumo:
Background and Purpose-The pattern of antenatal brain injury varies with gestational age at the time of insult. Deep brain nuclei are often injured at older gestational ages. Having previously shown postnatal hypertonia after preterm fetal rabbit hypoxia-ischemia, the objective of this study was to investigate the causal relationship between the dynamic regional pattern of brain injury on MRI and the evolution of muscle tone in the near-term rabbit fetus. Methods-Serial MRI was performed on New Zealand white rabbit fetuses to determine equipotency of fetal hypoxia-ischemia during uterine ischemia comparing 29 days gestation (E29, 92% gestation) with E22 and E25. E29 postnatal kits at 4, 24, and 72 hours after hypoxia-ischemia underwent T2- and diffusion-weighted imaging. Quantitative assessments of tone were made serially using a torque apparatus in addition to clinical assessments. Results-Based on the brain apparent diffusion coefficient, 32 minutes of uterine ischemia was selected for E29 fetuses. At E30, 58% of the survivors manifested hind limb hypotonia. By E32, 71% of the hypotonic kits developed dystonic hypertonia. Marked and persistent apparent diffusion coefficient reduction in the basal ganglia, thalamus, and brain stem was predictive of these motor deficits. Conclusions-MRI observation of deep brain injury 6 to 24 hours after near-term hypoxia-ischemia predicts dystonic hypertonia postnatally. Torque-displacement measurements indicate that motor deficits in rabbits progressed from initial hypotonia to hypertonia, similar to human cerebral palsy, but in a compressed timeframe. The presence of deep brain injury and quantitative shift from hypo-to hypertonia may identify patients at risk for developing cerebral palsy. (Stroke. 2012;43:2757-2763.)
Resumo:
Objective: This study investigated the role of periodontal disease in the development of stroke or cerebral infarction in patients by evaluating the clinical periodontal conditions and the subgingival levels of periodontopathogens. Material and Methods: Twenty patients with ischemic (I-CVA) or hemorrhagic (H-CVA) cerebrovascular episodes (test group) and 60 systemically healthy patients (control group) were evaluated for: probing depth, clinical attachment level, bleeding on probing and plaque index. Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans were both identified and quantified in subgingival plaque samples by conventional and real-time PCR, respectively. Results: The test group showed a significant increase in each of the following parameters: pocket depth, clinical attachment loss, bleeding on probing, plaque index and number of missing teeth when compared to control values (p<0.05, unpaired t-test). Likewise, the test group had increased numbers of sites that were contaminated with P. gingivalis (60%x10%; p<0.001; chi-squared test) and displayed greater prevalence of periodontal disease, with an odds ratio of 48.06 (95% CI: 5.96-387.72; p<0.001). Notably, a positive correlation between probing depth and the levels of P. gingivalis in ischemic stroke was found (r=0.60; p=0.03; Spearman's rank correlation coefficient test). A. actinomycetemcomitans DNA was not detected in any of the groups by conventional or real-time PCR. Conclusions: Stroke patients had deeper pockets, more severe attachment loss, increased bleeding on probing, increased plaque indexes, and in their pockets harbored increased levels of P. gingivalis. These findings suggest that periodontal disease is a risk factor for the development of cerebral hemorrhage or infarction. Early treatment of periodontitis may counteract the development of cerebrovascular episodes.
Resumo:
To investigate the prevalence and characteristics of cerebrovascular accidents (CVA) in a large population of adults with congenital heart disease (CHD).
Resumo:
The aim of this study was to analyse the cerebral venous outflow in relation to the arterial inflow during a Valsalva manoeuvre (VM). In 19 healthy volunteers (mean age 24.1 +/- 2.6 years), the middle cerebral artery (MCA) and the straight sinus (SRS) were insonated by transcranial Doppler sonography. Simultaneously the arterial blood pressure was recorded using a photoplethysmographic method. Two VM of 10 s length were performed per participant. Tracings of the variables were then transformed to equidistantly re-sampled data. Phases of the VM were analysed regarding the increase of the flow velocities and the latency to the peak. The typical four phases of the VM were also found in the SRS signal. The relative flow velocity (FV) increase was significantly higher in the SRS than in the MCA for all phases, particularly that of phase IV (p < 0.01). Comparison of the time latency of the VM phases of the MCA and SRS only showed a significant difference for phase I (p < 0.01). In particular, there was no significant difference for phase IV (15.8 +/- 0.29 vs. 16.0 +/- 0.28 s). Alterations in venous outflow in phase I are best explained by a cross-sectional change of the lumen of the SRS, while phases II and III are compatible with a Starling resistor. However, the significantly lager venous than the arterial overshoot in phase IV may be explained by the active regulation of the venous tone.
Resumo:
Veteran endurance athletes have an increased risk of developing atrial fibrillation (AF), with a striking male predominance. We hypothesized that male athletes were more prone to atrial and ventricular remodeling and investigated the signal-averaged P wave and factors that promote the occurrence of AF. Nonelite athletes scheduled to participate in the 2010 Grand Prix of Bern, a 10-mile race, were invited. Of the 873 marathon and nonmarathon runners who were willing to participate, 68 female and 70 male athletes were randomly selected. The runners with cardiovascular disease or elevated blood pressure (>140/90 mm Hg) were excluded. Thus, 121 athletes were entered into the final analysis. Their mean age was 42 ± 7 years. No gender differences were found for age, lifetime training hours, or race time. The male athletes had a significantly longer signal-averaged P-wave duration (136 ± 12 vs 122 ± 10 ms; p <0.001). The left atrial volume was larger in the male athletes (56 ± 13 vs 49 ± 10 ml; p = 0.001), while left atrial volume index showed no differences (29 ± 7 vs 30 ± 6 ml/m²; p = 0.332). In male athletes, the left ventricular mass index (107 ± 17 vs 86 ± 16 g/m²; p <0.001) and relative wall thickness (0.44 ± 0.06 vs 0.41 ± 0.07; p = 0.004) were greater. No differences were found in the left ventricular ejection fraction (63 ± 4% vs 66 ± 6%; p = 0.112) and mitral annular tissue Doppler e' velocity (10.9 ± 1.5 vs 10.6 ± 1.5 cm/s; p = 0.187). However, the tissue Doppler a' velocity was higher (8.7 ± 1.2 vs 7.6 ± 1.3 cm/s; p < 0.001) in the male athletes. Male athletes had a higher systolic blood pressure at rest (123 ± 9 vs 110 ± 11 mm Hg; p < 0.001) and at peak exercise (180 ± 15 vs 169 ± 19 mm Hg; p = 0.001). In the frequency domain analysis of heart rate variability, the sympatho-vagal balance, represented by the low/high-frequency power ratio, was significantly greater in male athletes (5.8 ± 2.8 vs 3.9 ± 1.9; p < 0.001). Four athletes (3.3%) had at least one documented episode of paroxysmal AF, all were men (p = 0.042). In conclusion, for a comparable amount of training and performance, male athletes showed a more pronounced atrial remodeling, a concentric type of ventricular remodeling, and an altered diastolic function. A higher blood pressure at rest and during exercise and a higher sympathetic tone might be causal. The altered left atrial substrate might facilitate the occurrence of AF.
Resumo:
Endurance athletes have an increased risk of developing atrial fibrillation (AF) at 40 to 50 years of age. Signal-averaged P-wave analysis has been used for identifying patients at risk for AF. We evaluated the impact of lifetime training hours on signal-averaged P-wave duration and modifying factors. Nonelite men athletes scheduled to participate in the 2010 Grand Prix of Bern, a 10-mile race, were invited. Four hundred ninety-two marathon and nonmarathon runners applied for participation, 70 were randomly selected, and 60 entered the final analysis. Subjects were stratified according to their lifetime training hours (average endurance and strength training hours per week × 52 × training years) in low (<1,500 hours), medium (1,500 to 4,500 hours), and high (>4,500 hours) training groups. Mean age was 42 ± 7 years. From low to high training groups signal-averaged P-wave duration increased from 131 ± 6 to 142 ± 13 ms (p = 0.026), and left atrial volume increased from 24.8 ± 4.6 to 33.1 ± 6.2 ml/m(2) (p = 0.001). Parasympathetic tone expressed as root of the mean squared differences of successive normal-to-normal intervals increased from 34 ± 13 to 47 ± 16 ms (p = 0.002), and premature atrial contractions increased from 6.1 ± 7.4 to 10.8 ± 7.7 per 24 hours (p = 0.026). Left ventricular mass increased from 100.7 ± 9.0 to 117.1 ± 18.2 g/m(2) (p = 0.002). Left ventricular systolic and diastolic function and blood pressure at rest were normal in all athletes and showed no differences among training groups. Four athletes (6.7%) had a history of paroxysmal AF, as did 1 athlete in the medium training group and 3 athletes in the high training group (p = 0.252). In conclusion, in nonelite men athletes lifetime training hours are associated with prolongation of signal-averaged P-wave duration and an increase in left atrial volume. The altered left atrial substrate may facilitate occurrence of AF. Increased vagal tone and atrial ectopy may serve as modifying and triggering factors.
Resumo:
Cerebrovascular accidents (CVA) are considered among the most serious adverse events after transcatheter aortic valve implantation (TAVI). The objective of the present study was to evaluate the frequency and timing of CVA after TAVI and to investigate the impact on clinical outcomes within 30 days of the procedure.