176 resultados para CD44
Resumo:
Transplantation of hepatocytes or hepatocyte-like cells of extrahepatic origin is a promising strategy for treatment of acute and chronic liver failure. We examined possible utility of hepatocyte-like cells induced from bone marrow cells for such a purpose. Clonal cell lines were established from the bone marrow of two different rat strains. One of these cell lines, rBM25/S3 cells, grew rapidly (doubling time, approximately 24 hours) without any appreciable changes in cell properties for at least 300 population doubling levels over a period of 300 days, keeping normal diploid karyotype. The cells expressed CD29, CD44, CD49b, CD90, vimentin, and fibronectin but not CD45, indicating that they are of mesenchymal cell origin. When plated on Matrigel with hepatocyte growth factor and fibroblast growth factor-4, the cells efficiently differentiated into hepatocyte-like cells that expressed albumin, cytochrome P450 (CYP) 1A1, CYP1A2, glucose 6-phosphatase, tryptophane-2,3-dioxygenase, tyrosine aminotransferase, hepatocyte nuclear factor (HNF)1 alpha, and HNF4alpha. Intrasplenic transplantation of the differentiated cells prevented fatal liver failure in 90%-hepatectomized rats. In conclusion, a clonal stem cell line derived from adult rat bone marrow could differentiate into hepatocyte-like cells, and transplantation of the differentiated cells could prevent fatal liver failure in 90%-hepatectomized rats. The present results indicate a promising strategy for treating human fatal liver diseases.
Resumo:
PURPOSE:
To investigate the role of the Fractalkine receptor CX3CR1 pathway in oxidative insults-mediated retinal degeneration and immune activation.
METHODS:
A prooxidant, paraquat (0.75 µM) was injected into the vitreous of C57BL/6J, CX3CR1(gpf/+), and CX3CR1(gfp/gfp) mice. Retinal lesions were investigated clinically by topic endoscopic fundus imaging and fluorescence angiography, and pathologically by light- and electron microscopy. Retinal immune gene expression was determined by real-time RT-PCR. Microglial activation and immune cell infiltration were examined by confocal microscopy of retinal flatmounts.
RESULTS:
Intravitreal injection of paraquat (0.75 µM) resulted in acute retinal capillary nonperfusion within 2 days, which improved from 4 days to 4 weeks postinjection (p.i.). Panretinal degeneration was observed at 4 days p.i. and progressed further at 4 weeks p.i. In the absence of CX3CR1, retinal degeneration was exaggerated and was accompanied by increased TNF-a, iNOS, IL-1ß, Ccl2, and Casp-1 gene expression. Confocal microscopy of retinal flatmounts revealed microglial activation and CD44(+)MHC-II(+) monocyte and GR1(+) neutrophil infiltration in paraquat-injected eyes. The number of activated microglia and infiltrating leukocytes was significantly higher in CX3CR1(gfp/gfp) mice than in CX3CR1(gfp/+) mice.
CONCLUSIONS:
Our results suggest that the CX3CR1 signaling pathway may play an important role in controlling retinal inflammation under oxidative and ischemia/reperfusion conditions. In the absence of CX3CR1, uncontrolled retinal inflammation results in exaggerated retinal degeneration.
Resumo:
Hepatocellular carcinoma (HCC) is the third common cause of cancer-related deaths and its prognostication is still suboptimal. The aim of this study was to establish a new prognostication algorithm for HCC.
Resumo:
Gastric carcinogenesis has been well documented in the step-wise histopathological model, known as Correa pathway. Several biomarkers including CD44, Musashi-1 and CD133 have been reported as putative stem cell (PSC) markers.
Resumo:
Although trastuzumab (Herceptin) has substantially improved the overall survival of patients with mammary carcinomas, even initially well-responding tumors often become resistant. Because natural killer (NK) cell-mediated antibody-dependent cell-mediated cytotoxicity (ADCC) is thought to contribute to the therapeutic effects of trastuzumab, we have established a cell culture system to select for ADCC-resistant SK-OV-3 ovarian cancer and MCF7 mammary carcinoma cells. Ovarian cancer cells down-regulated HER2 expression, resulting in a more resistant phenotype. MCF7 breast cancer cells, however, failed to develop resistance in vitro. Instead, treatment with trastuzumab and polyclonal NK cells resulted in the preferential survival of individual sphere-forming cells that displayed a CD44(high)CD24(low) "cancer stem cell-like" phenotype and expressed significantly less HER2 compared with non-stem cells. Likewise, the CD44(high)CD24(low) population was also found to be more immunoresistant in SK-BR3, MDA-MB231, and BT474 breast cancer cell lines. When immunoselected MCF7 cells were then re-expanded, they mostly lost the observed phenotype to regenerate a tumor cell culture that displayed the initial HER2 surface expression and ADCC-susceptibility, but was enriched in CD44(high)CD24(low) cancer stem cells. This translated into increased clonogenicity in vitro and tumorigenicity in vivo. Thus, we provide evidence that the induction of ADCC by trastuzumab and NK cells may spare the actual tumor-initiating cells, which could explain clinical relapse and progress. Moreover, our observation that the "relapsed" in vitro cultures show practically identical HER2 surface expression and susceptibility toward ADCC suggests that the administration of trastuzumab beyond relapse might be considered, especially when combined with an immune-stimulatory treatment that targets the escape variants.
Resumo:
The surface marker CD44 has been identified as one of several markers associated with cancer stem cells (CSC) in solid tumors, but its ubiquitous expression in many cell types, including hematopoietic cells, has hindered its use in targeting CSCs. In this study, 28 paired primary tumor and adjacent nontumor gastric tissue samples were analyzed for cell surface protein expression. Cells that expressed pan-CD44 were found to occur at significantly higher frequency in gastric tumor tissues. We identified CD44v8-10 as the predominant CD44 variant expressed in gastric cancer cells and verified its role as a gastric CSC marker by limiting dilution and serial transplantation assays. Parallel experiments using CD133 failed to enrich for gastric CSCs. Analyses of another 26 primary samples showed significant CD44v8-10 upregulation in gastric tumor sites. Exogenous expression of CD44v8-10 but not CD44 standard (CD44s) increased the frequency of tumor initiation in immunocompromised mice. Reciprocal silencing of total CD44 resulted in reduced tumor-initiating potential of gastric cancer cells that could be rescued by CD44v8-10 but not CD44s expression. Our findings provide important functional evidence that CD44v8-10 marks human gastric CSCs and contributes to tumor initiation, possibly through enhancing oxidative stress defense. In addition, we showed that CD44v8-10 expression is low in normal tissues. Because CD44 also marks CSCs of numerous human cancers, many of which may also overexpress CD44v8-10, CD44v8-10 may provide an avenue to target CSCs in other human cancers.
Resumo:
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the Western world. It is becoming increasingly clear that CRC is a diverse disease, as exemplified by the identification of subgroups of CRC tumours that are driven by distinct biology. Recently, a number of studies have begun to define panels of diagnostically relevant markers to align patients into individual subgroups in an attempt to give information on prognosis and treatment response. We examined the immunohistochemical expression profile of 18 markers, each representing a putative role in cancer development, in 493 primary colorectal carcinomas using tissue microarrays. Through unsupervised clustering in stage II cancers, we identified two cluster groups that are broadly defined by inflammatory or immune-related factors (CD3, CD8, COX-2 and FOXP3) and stem-like factors (CD44, LGR5, SOX2, OCT4). The expression of the stem-like group markers was associated with a significantly worse prognosis compared to cases with lower expression. In addition, patients classified in the stem-like subgroup displayed a trend towards a benefit from adjuvant treatment. The biologically relevant and poor prognostic stem-like group could also be identified in early stage I cancers, suggesting a potential opportunity for the identification of aggressive tumors at a very early stage of the disease.
Resumo:
PURPOSE: Recent evidence suggests that cancer stem cells (CSC) are responsible for key elements of colon cancer progression and recurrence. Germline variants in CSC genes may result in altered gene function and/or activity, thereby causing interindividual differences in a patient's tumor recurrence capacity and chemoresistance. We investigated germline polymorphisms in a comprehensive panel of CSC genes to predict time to tumor recurrence (TTR) in patients with stage III and high-risk stage II colon cancer.
EXPERIMENTAL DESIGN: A total of 234 patients treated with 5-fluorouracil-based chemotherapy at the University of Southern California were included in this study. Whole blood samples were analyzed for germline polymorphisms in genes that have been previously associated with colon CSC (CD44, Prominin-1, DPP4, EpCAM, ALCAM, Msi-1, ITGB1, CD24, LGR5, and ALDH1A1) by PCR-RFLP or direct DNA-sequencing.
RESULTS: The minor alleles of CD44 rs8193 C>T, ALCAM rs1157 G>A, and LGR5 rs17109924 T>C were significantly associated with increased TTR (9.4 vs. 5.4 years; HR, 0.51; 95% CI: 0.35-0.93; P = 0.022; 11.3 vs. 5.7 years; HR, 0.56; 95% CI: 0.33-0.94; P = 0.024, and 10.7 vs. 5.7 years; HR, 0.33; 95% CI: 0.12-0.90; P = 0.023, respectively) and remained significant in the multivariate analysis stratified by ethnicity. In recursive partitioning, a specific gene variant profile including LGR5 rs17109924, CD44 rs8193, and ALDH1A1 rs1342024 represented a high-risk subgroup with a median TTR of 1.7 years (HR, 6.71, 95% CI: 2.71-16.63, P < 0.001).
CONCLUSION: This is the first study identifying common germline variants in colon CSC genes as independent prognostic markers for stage III and high-risk stage II colon cancer patients.
Resumo:
PURPOSE: EphA2, a member of the Eph receptor tyrosine kinases family, is an important regulator of tumor initiation, neovascularization, and metastasis in a wide range of epithelial and mesenchymal cancers; however, its role in colorectal cancer recurrence and progression is unclear.
EXPERIMENTAL DESIGN: EphA2 expression was determined by immunohistochemistry in stage II/III colorectal tumors (N = 338), and findings correlated with clinical outcome. The correlation between EphA2 expression and stem cell markers CD44 and Lgr5 was examined. The role of EphA2 in migration/invasion was assessed using a panel of KRAS wild-type (WT) and mutant (MT) parental and invasive colorectal cancer cell line models.
RESULTS: Colorectal tumors displayed significantly higher expression levels of EphA2 compared with matched normal tissue, which positively correlated with high CD44 and Lgr5 expression levels. Moreover, high EphA2 mRNA and protein expression were found to be associated with poor overall survival in stage II/III colorectal cancer tissues, in both univariate and multivariate analyses. Preclinically, we found that EphA2 was highly expressed in KRASMT colorectal cancer cells and that EphA2 levels are regulated by the KRAS-driven MAPK and RalGDS-RalA pathways. Moreover, EphA2 levels were elevated in several invasive daughter cell lines, and downregulation of EphA2 using RNAi or recombinant EFNA1 suppressed migration and invasion of KRASMT colorectal cancer cells.
CONCLUSIONS: These data show that EpHA2 is a poor prognostic marker in stage II/III colorectal cancer, which may be due to its ability to promote cell migration and invasion, providing support for the further investigation of EphA2 as a novel prognostic biomarker and therapeutic target. Clin Cancer Res; 22(1); 230-42. ©2015 AACR.
Resumo:
Background: EpHA2 is a 130 kD transmembrane glycoprotein belonging to ephrin receptor subfamily and involved in angiogenesis/tumour neovascularisation. High EpHA2 mRNA level has recently been implicated in cetuximab resistance. Previously, we found high EpHA2 levels in a panel of invasive colorectal cancer (CRC) cells, which was associated with high levels of stem-cell marker CD44. Our aim was to investigate the prognostic value of EpHA2 and subsequently correlate expression levels to known clinico-pathological variables in early stage CRC. Methods: Tissue samples from 509 CRC patients were analysed. EpHA2 expression was measured using IHC. Kaplan-Meier graphs were used. Univariate and multivariate analyses employed Cox Proportional Hazards Ratio (HR) method. A backward selection method (Akaike’s information criterion) was used to determine a refined multivariate model. Results: EpHA2 was highly expressed in CRC adenocarcinoma compared to matched normal colon tissue. In support of our preclinical invasive models, strong correlation was found between EpHA2 expression and CD44 and Lgr5 staining (p<0.001). In addition, high EpHA2 expression significantly correlated with vascular invasion (p=0.03).HR for OS for stage II/III patients with high EpHA2 expression was 1.69 (95%CI: 1.164-2.439; p=0.003). When stage II/III was broken down into individual stages, there was significant correlation between high EpHA2 expression and poor 5-years OS in stage II patients (HR: 2.18; 95%CI: 1.28-3.71; p=0.005).HR in the stage III group showed a trend to statistical significance (HR: 1.48; 95%CI=0.87-2.51; p=0.05). In both univariate and multivariate analyses of stage II patients, high EpHA2 expression was the only significant factor and was retained in the final multivariate model. Higher levels of EpHA2 were noted in our RAS and BRAF mutant CRC cells, and silencing EpHA2 resulted in significant decreases in migration/invasion in parental and invasive CRC sublines. Correlation between KRAS/NRAS/BRAFmutational status and EpHA2 expression in clinical samples is ongoing. Conclusions: Taken together, our study is the first to indicate that EpHA2 expression is a predictor of poor clinical outcome and a potential novel target in early stage CRC.
Resumo:
Tese de mestrado. Biologia (Biologia Evolutiva e do Desenvolvimento). Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
Thesis (Ph.D.)--University of Washington, 2014
Resumo:
RESUMO:O processo de glicosilação é a modificação pós-traducional de proteínas mais comum e está envolvido em vários processos fisiológicos e patológicos. Especificamente, certos perfis glicosídeos estão correlacionados a estados específicos de diferenciação celular, e podem modular vários eventos celulares, como sinalização celular, migração celular e interações hospedeiro-patogénio. Assim sendo, a glicosilação desempenha um papel crucial na modulação de vários processos imunológicos. No entanto, permanece por esclarecer como as estruturas glicosídicas influenciam a imunidade. Especificamente, algumas estruturas glicosídicas terminais que estão modificadas pela ligação de ácido siálico desempenham um papel importante em várias funções do sistema imune, nomeadamente migração leucocitária em contexto de inflamação e ativação de células imunes. Como tal, este trabalho teve como objectivo investigar como a expressão de certos glicanos influencia componentes importantes da resposta imune inata e adaptativa. Este trabalho está dividido em três componentes principais: 1) A imunidade está amplamente dependente da habilidade das células circulantes migrarem para os tecidos inflamados, sendo que a ligação de leucócitos à Eselectina endotelial é o primeiro passo. Assim, nós analisámos a estrutura e função dos ligandos de E-selectina que são expressos pelas células humanas mononucleares de sangue periférico (PBMCs), fornecendo novos conhecimentos para a compreensão dos intervenientes moleculares que mediam a ligação dos monócitos, células CD4+ e CD8+T e células B ao endotélio vascular. Surpreendentemente, os monócitos apresentaram maior capacidade de ligação à E-selectina comparativamente aos linfócitos. Esta observação pode ser explicada pelo facto de os monócitos humanos expressarem, uniformemente, um vasto reportório de glicoproteínas que exibem afinidade de ligação à E-selectina, nomeadamente: as glicoformas do CD43 (CD43E) e do CD44 (HCELL), em adição à já previamente reportada glicoforma da PSGL-1 (CLA). Consistentemente, a diferente capacidade que as diversas populações linfocitárias apresentam de se ligar à E-selectina, está integralmente relacionada com a sua expressão de glicoproteínas com afinidade de ligação à E-selectina. Enquanto que as células CD4+T apresentam uma elevada reatividade à E-selectina, as células CD8+T e B demonstram pouca ou nenhuma capacidade de ligação à E-selectina. Esta atividade de ligação à E-selectina das células CD4+T é conferida pela expressão de HCELL, em adição às já previamente reportadas CLA e CD43E. As células CD8+ T não expressam HCELL e apenas expressam pequenas quantidades de CLA e CD43E, enquanto que as células B não expressam ligandos de Eselectina. Mais, a exofucosilação da superfície destas células, levou ao dramático aumento da expressão dos ligandos de E-selectina em todos as populações leucocitárias, verificando-se que a criação de certos ligandos de E-selectina está dependente do tipo de célula, após fucosilação. Colectivamente, estes resultados redefinem o nosso conhecimento acerca dos mecanismos moleculares que governam o tráfico das células mononucleares de sangue periférico em contexto de inflamação. 2) A habilidade das células dendríticas (DCs) para extravasarem em locais de inflamação é crucial para o sucesso da terapia com DCs. Assim, analisámos a estrutura e função das moléculas de adesão que mediam a migração transendotelial (TEM) das DCs. Para isso, foram usadas DCs geradas a partir da diferenciação de monócitos (mo-DCS), obtidos quer pelo métodos de separação imuno-magnética de células CD14+ (CD14-S) ou por isolamento por aderência ao plástico (PA-S). Os resultados obtidos indicam que as glicoformas de ligação à Eselectina de PSGL-1, CD43 e CD44 são expressas pelas CD14-S mo-DCs, enquanto que as PA-S mo-DCs expressam apenas CLA. É importante notar que a ligação do CD44 nas mo-DCs, mas não nas PA-S mo-DCs, desencadeia a ativação e consequente adesão da VLA-4 ao endotélio na ausência de um gradiente de quimiocinas. Procedeu-se também à análise dos ligandos E-selectina expressos em mo-DCs geradas a partir de monócitos do sangue do cordão umbilical (UCB) e, inesperadamente, as UCB mo-DCs não expressam qualquer glicoproteína com reatividade à E-selectina. Além disso, a exofucosilação das mo- DCs humanas utilizando uma α(1,3)-fucosiltransferase aumenta significativamente a expressão de HCELL e, portanto, estas células apresentam uma capacidade aumentada para se ligarem à E-selectina em condições de fluxo hemodinâmico. Estes resultados destacam o papel do HCELL no desencadeamento do TEM das CD14-S mo-DCs e sugerem que estratégias para potenciar a expressão de HCELL poderão impulsionar o recrutamento de mo-DCs para locais de inflamação. 3) Outro obstáculo para alcançar o sucesso promissor de vacinas baseadas em DCs é o estabelecimento de abordagens eficientes que poderão melhorar o estado de maturação e apresentação antigénica das DCs. Por conseguinte, foram investigadas abordagens alternativas que podem superar este obstáculo. Através da remoção de ácido siálico de superfície celular das DCs, conseguiu-se induzir a maturação de DC humanas e de ratinhos. Notavelmente, tanto as DCs humanas como as de ratinho, ao serem desialiladas mostraram uma capacidade aumentada para induzir a proliferação de células T, para secretar citocinas Th1 e para induzir a morte específica de células tumorais. Em adição, as DCs desialiladas apresentam uma maior capacidade de apresentação cruzada de antigénios tumorais às células T citotóxicas. Colectivamente, o presente estudo oferece uma visão chave para optimizar a capacidade das DCs em induzir respostas imunitárias anti-tumorais, e indica que o tratamento com sialidase é uma nova tecnologia para melhorar a eficácia e aplicabilidade das vacinas baseadas em DCs. Coletivamente, os nossos resultados demostram como a glicosilação e a sua manipulação podem modular a imunidade. Concretamente, através de uma reação de exofucosilação conseguimos aumentar fortemente a capacidade de os leucócitos extravasarem para os tecidos afectados, enquanto que a remoção dos níveis de ácido siálico da superfície celular das DCs, induz potentes respostas anti-tumorais mediadas por células T citotóxicas. ---------------------------- ABSTRACT: Glycosylation is the most widely form of protein post-translational modification and is involved in many physiological and pathological processes. Specifically, certain patterns of glycosylation are associated with determined stages of cell differentiation and can modulate processes like cell-signaling and migration and host-pathogen interactions. As such, glycosylation plays a crucial role in the modulation of several immune events. However, how glycans execute this immune-modulation and, therefore, influence immunity is still poorly unknown. Specifically, some terminal sialic acid-modified determinants are known to be involved in several physiological immune processes, including leukocyte trafficking into sites of inflammation and cell immune activation. Therefore, in this work, we sought to investigate more deeply how the expression of these glycosidic structures affects events form both innate and adaptive immune responses. To this end, we divided our work into three main parts: 1) Immunity critically depends on the ability of sentinel circulating cells to infiltrate injured sites, of which leukocyte binding to endothelial E-selectin is the critical first step. Thus, we first analyzed the structure and function of the E-selectin ligands expressed on native human peripheral blood mononuclear cells (PBMCs), providing novel insights into the molecular effectors governing adhesion of circulating monocytes, and of circulating CD4+T, CD8+T and B cells, to vascular endothelium under hemodynamic shear conditions. Strikingly, monocytes show a higher ability to tether and roll on endothelial cells than lymphocyte subsets. This is due to the fact that human circulating monocytes uniformly display a wide repertoire of E-selectin binding glycoproteins, namely the E-selectin-binding glycoforms of CD43 (CD43E) and CD44 (HCELL), in addition to the previously described E-selectin-binding glycoform of PSGL-1 (CLA). In addition, we also observed a differential ability of the different lymphocyte subsets to bind to Eselectin under hemodynamic shear stress conditions, and these differences were highly correlated with their individual expression of E-selectin binding glycoproteins. While CD4+T cells show a robust E-selectin binding ability, CD8+T and B cells show little to no E-selectin reactivity. CD4+T cell potent Eselectin rolling activity is conferred by HCELL expression, in addition to the previously reported E-selectin-binding glycoproteins CD43E and CLA. CD8+T cells display no HCELL and low amounts of CLA and CD43E, whereas B cells lack E-selectin ligand expression. Moreover, enforced exofucosylation of cell surface of these cells noticeably increases expression of functional E-selectin ligands among all leukocytes subsets, with cell type-dependent specificity in the protein scaffolds that are modified. Taken together, these findings redefine our understanding of the molecular mechanisms governing the trafficking patterns of PBMCs that are relevant in the context of acute or chronic inflammatory conditions. 2) The ability of circulating dendritic cells (DCs) to extravasate at inflammatory sites is critical to the success of DC-based therapies. Therefore, we assessed the structure and function of adhesion molecules mediating the transendothelial migration (TEM) of human monocyte derived-DCs (mo-DCs), obtained either by CD14 positive immune-magnetic selection (CD14-S) or by plastic adherence of blood monocytes (PA-S). We report for the first time that the E-selectin binding glycoforms of PSGL-1, CD43 and CD44 are all expressed on CD14-S mo-DCs, in contrast to PA-S mo-DCs that express only CLA. Importantly, CD44 engagement on CD14-S mo-DCs, but not on PA-S mo-DCs, triggers VLA-4-dependent adhesiveness and programs TEM in absence of chemokine gradient. We also analyzed the E-selectin ligands expressed on mo-DCs generated from umbilical cord blood (UCB) monocytes, and unexpectedly, UCB mo-DCs do not express any glycoprotein with E-selectin reactivity. Furthermore, exoglycosylation of human mo-DCs using an α(1,3)-fucosyltransferase significantly increases expression of HCELL, and therefore exofucosylated mo-DCs exhibit an augmented ability to bind to E-selectin under hemodynamic shear stress conditions. These findings highlight a role for HCELL engagement in priming TEM of CD14-S mo-DCs, and suggest that strategies to enforce HCELL expression could boost mo-DC recruitment to inflammatory sites.3) Another obstacle to achieve the promising success of DC-based vaccines is the establishment of efficient approaches that could successfully enhance maturation and cross-presentation ability of DCs. Therefore, we investigated an alternative approach that can overcome this problem. Through removal of sialic acid content from DC cell surface we are able to elicit maturation of both human and mouse DCs. Notably, desialylated human and murine DCs showed enhanced ability to induce autologous T cell to proliferate, to secrete Th1 cytokines and to kill tumor cells. Moreover, desialylated DCs display enhanced cross-presentation of tumor antigens to cytotoxic CD8+ T cells. Collectively, this study offers key insight to optimize the ability of DCs to boost anti-tumor immune responses, and indicates that the treatment with an exogenous sialidase is a powerful new technology to improve the efficacy and applicability of DC-based vaccines. Overall, our findings show how glycosylation and its manipulation can modulate immunity. Concretely, through an exofucosylation reaction we are able to greatly augment the ability of leukocytes to extravasate into injured tissues, while removal of sialic acid moieties from cell surface of DCs, significantly potentiate their ability to induce anti-tumor cytotoxic T cell-mediate responses.
Resumo:
La chaîne invariante forme un complexe nonamérique avec les molécules classiques du CMH de classe II. HLA-DM et HLA-DO, des molécules non-classiques de classe II, sont aussi impliquées dans la présentation des peptides antigéniques aux lymphocytes T. Ces molécules chaperones de la présentation antigénique modulent la capacité d’une cellule à présenter des antigènes par les moloécules classiques du CMH de classe II. La régulation transcriptionnelle des molécules chaperones, tout comme celle des autres molécules du CMH de classe II, est assurée par le transactivateur CIITA. La molécule HLA-DR peut être régulée négativement de manière post-traductionnelle par ubiquitination grâce à l’enzyme E3 ubiquitine ligase MARCH1. Celle-ci est induite par l’interleukine-10 dans les monocytes. L’objectif de ce projet était de déterminer si l’ubiquitination par MARCH1 peut aussi réguler l’expression des molécules chaperones de la présentation antigénique. Les expériences furent réalisées dans le contexte de co-transfections en cellules HEK293T. L’expression des molécules fut évaluée par immunomarquages et cytométrie de flux. Il a été montré que l’isoforme p33 de la chaîne invariante est régulé négativement en présence de MARCH1 à partir de la surface cellulaire, causant ainsi sa dégradation. Tel que démontré par l’utilisation d’un mutant dépourvu de queue cytoplasmique, cette dernière région n’est pas indispensable à ce phénomène. Une hypothèse est qu’une molécule non-identifiée, associée à Ii, serait ubiquitinée par MARCH1, l’entraînant dans sa régulation négative. Il fut déterminer que cette molécule n’était pas CXCR2, un récepteur pouvant être impliqué, avec la chaîne invariante et CD44, en tant que récepteur de MIF (Macrophage Inhibitory Factor). Il fut aussi montré que HLA-DO peut être ciblé par MARCH1 mais ceci ne semble pas être un phénomène dominant; l’expression des complexes DO/DM n’étant pas affectée bien qu’ils entrent en interaction avec MARCH1. L’expression de HLA-DM n’est pas affectée par MARCH1. Il n’a toutefois pas été déterminé hors de tout doute si MARCH1 peut modifier DM; des résultats obtenus avec une queue cytoplasmique de DM possédant une lysine laissant suggérer qu’il est possible que MARCH1 interagisse avec DM. Dans l’ensemble, les travaux démontrent que l’ubiquitination par MARCH1 joue un rôle dans la régulation post-transcriptionnelle de la chaîne invariante p33 mais pas HLA-DO et HLA-DM.