191 resultados para CD40
Resumo:
Both antigen-specific and non-specific mechanisms may be involved in the pathogenesis of oral lichen planus (OLP). Antigen-specific mechanisms in OLP include antigen presentation by basal keratinocytes and antigen-specific keratinocyte killing by CD8(+) cytotoxic T-cells. Non-specific mechanisms include mast cell degranulation and matrix metalloproteinase (MMP) activation in OLP lesions. These mechanisms may combine to cause T-cell accumulation in the superficial lamina propria, basement membrane disruption, intra-epithelial T-cell migration, and keratinocyte apoptosis in OLP. OLP chronicity may be due, in part, to deficient antigen-specific TGF-beta1-mediated immunosuppression. The normal oral mucosa may be an immune privileged site (similar to the eye, testis, and placenta), and breakdown of immune privilege could result in OLP and possibly other autoimmune oral mucosal diseases. Recent findings in mucocutaneous graft-versus-host disease, a clinical and histological correlate of lichen planus, suggest the involvement of TNF-alpha, CD40, Fas, MMPs, and mast cell degranulation in disease pathogenesis. Potential roles for oral Langerhans cells and the regional lymphatics in OLP lesion formation and chronicity are discussed. Carcinogenesis in OLP may be regulated by the integrated signal from various tumor inhibitors (TGF-beta1, TNF-alpha, IFN-gamma, IL-12) and promoters (MIF, MMP-9). We present our recent data implicating antigen-specific and non-specific mechanisms in the pathogenesis of OLP and propose a unifying hypothesis suggesting that both may be involved in lesion development. The initial event in OLP lesion formation and the factors that determine OLP susceptibility are unknown.
Resumo:
Studies on purified blood dendritic cells (DCs) are hampered by poor viability in tissue culture. We, therefore, attempted to study some of the interactions/relationships between DCs and other blood cells by culturing unseparated peripheral blood mononuclear cell (PBMC) preparations in vitro. Flow cytometric techniques were used to undertake a phenotypic and functional analysis of DCs within the cultured PBMC population. We discovered that both the CD11c(+) and CD11c(-) CD123(hi) DC subsets maintained their viability throughout the 3-day culture period, without the addition of exogenous cytokines. This viability was accompanied by progressive up-regulation of the surface costimulatory (CD40, CD80, CD86) and activation (CMRF-44, CMRF-56, CD83) molecules. The survival and apparent production of DCs in PBMC culture (without exogenous cytokines) and that of sorted DCs (with cytokines) were evaluated and compared by using TruCOUNT analysis. Absolute DC counts increased (for CD123hi and CD11c+ subsets) after overnight culture of PBMCs. Single-cell lineage depletion experiments demonstrated the rapid and spontaneous emergence of new in vitro generated DCs from CD14(+)/CD16(+) PBMC radioresistant precursors, additional to the preexisting ex vivo DC population. Unlike monocyte-derived DCs, blood DCs increased dextran uptake with culture and activation. Finally, DCs obtained after culture of PBMCs for 3 days were as effective as freshly isolated DCs in stimulating an allogeneic mixed leukocyte reaction. (C) 2002 by The American Society of Hematology.
Resumo:
Antigen-specific suppression of a previously primed immune response is a major challenge for immunotherapy of autoimmune disease. ReIB activation is required for myeloid DC differentiation. Here, we show that antigen-exposed DCs in which ReIB function is inhibited lack cell surface CD40, prevent priming of immunity, and suppress previously primed immune responses. DCs generated from CD40-deficient mice similarly confer suppression. Regulatory CD4(+) T cells induced by the DCs transfer antigen-specific Infectious tolerance to primed recipients in an interleukin10-dependent fashion. Thus CD40, regulated by ReIB activity, determines the consequences of antigen presentation by myeloid DCs. These observations have significance for autoimmune immunotherapy and suggest a mechanism by which peripheral tolerance might be constitutively maintained by RelB(-) CD40(-) DCs.
Resumo:
The outcome of dendritic cell (DC) presentation of Ag to T cells via the TCR/MHC synapse is determined by second signaling through CD80/86 and, importantly, by ligation of costimulatory ligands and receptors located at the DC and T cell surfaces. Downstream signaling triggered by costimulatory molecule ligation results in reciprocal DC and T cell activation and survival, which predisposes to enhanced T cell-mediated immune responses. In this study, we used adenoviral vectors to express a model tumor Ag (the E7 oncoprotein of human papillomavirus 16) with or without coexpression of receptor activator of NF-kappaB (RANK)/RANK ligand (RANKL) or CD40/CD40L costimulatory molecules, and used these transgenic DCs to immunize mice for the generation of E7-directed CD8(+) T cell responses. We show that coexpression of RANK/RANKL, but not CD40/CD40L, in E7-expressing DCs augmented E7-specific IFN-gamma-secreting effector and memory T cells and E7-specific CTLs. These responses were also augmented by coexpression of T cell costimulatory molecules (RANKL and CD40L) or DC costimulatory molecules (RANK and CD40) in the E7-expressing DC immunogens. Augmentation of CTL responses correlated with up-regulation of CD80 and CD86 expression in DCs transduced with costimulatory molecules, suggesting a mechanism for enhanced T cell activation/survival. These results have generic implications for improved tumor Ag-expressing DC vaccines, and specific implications for a DC-based vaccine approach for human papillomavirus 16-associated cervical carcinoma.
Resumo:
Actualmente a inflamação é considerada uma componente importante na aterosclerose, desde o seu início até à ruptura da placa seguida de trombose e da progressiva obstrução do vaso. A ruptura da cápsula fibrótica da placa expõe factores de tecido presentes no seu núcleo necrótico que induzem o processo inflamatório, promovendo a adesão celular e a coagulação e que conduzem à formação do trombo. Por seu turno, várias citocinas e moléculas de adesão celular contribuem activamente para o desenvolvimento da placa. Em particular a citocina TNF-a e a molécula de adesão intercelular (ICAM-1) poderão ser indicadoras de inflamação enquanto que as formas solúveis de P-selectina e de CD40 ligando (sCD40L) poderão dar a magnitude da activação plaquetária. Neste trabalho foram estudados 17 doentes com enfarte de miocárdio submetidos a angioplastia (grupo AMI) e 16 doentes com confirmação angiográfica de ausência de doença coronária. Os doentes do grupo AMI foram seguidos nas primeiras 24h de evolução do enfarte agudo de miocárdio antes da administração de medicação e da intervenção angiográfica e ao longo do período de recuperação, 2 e 40 dias após enfarte. Foram medidas no soro por imunoensaio as concentrações de TNF-a e das formas solúveis de CD40L, ICAM-1 e P-selectina. Foram observadas variações significativas de sP-selectina relativamente aos controlos. Imediatamente após o enfarte de miocárdio verificou-se um aumento de sP-selectina, seguido de uma descida brusca dos seus níveis às 48h, e de um incremento para valores idênticos aos observados no grupo de controlo ao 40º dia. As variações observadas nas concentrações de sCD40L não foram significativas relativamente aos controlos. No entanto, verificou-se uma tendência de diminuição da concentração até 48h após o enfarte de miocárdio, seguindo-se um aumento que atingiu valores ligeiramente superiores ao do grupo controlo no 40º dia. As concentrações de TNF-a medidas foram sistematicamente superiores às verificadas no grupo controlo, tendo-se ainda observado uma subida gradual desde o enfarte de miocárdio até ao 40º dia, sendo este incremento significativo. Os valores de sICAM-1 não apresentaram quaisquer variações após o enfarte nem relativamente ao grupo controlo. As variações observadas sugerem um papel importante destes marcadores no processo inflamatório e na evolução do enfarte de miocárdio. O aumento brusco da concentração de sP-selectina após o enfarte de miocárdio evidencia a activação plaquetária e trombose. Na evolução do enfarte, e à medida que as variáveis hemodinâmicas retornam a valores estáveis, devido à medicação aplicada, o aumento de sCD40L e TNF-a em circulação pode reflectir o papel destas moléculas na recuperação endotelial e do miocárdio.
Resumo:
La criptococosis es causada por la inhalación de levaduras encapsuladas de Cryptococcus neoformans o Cryptococcus gattii. Representa una de las tres infecciones graves por oportunistas en pacientes con SIDA y existe aproximadamente un 6 por ciento de incidencia de criptococosis clínica en pacientes con transplante de órganos sólidos. Estas dos especies difieren la fisiopatogenia durante la infección. El factor de virulencia principal de Cryptococcus sp. es la presencia del polisacárido capsular, glucuronoxilomanano (GXM), de alto peso molecular, que es continuamente secretado por las levaduras. Los macrófagos son células centrales en la respuesta innata al hongo, los cuales deben ser activados por linfocitos T helper 1 para un eficiente control de la infección. Sin embargo, estas células también son suceptibles al parasitismo intracelular, permitiendo la infección persistente y la diseminación a sitios extrapulmonares. Este proyecto propone investigar la capacidad de levaduras de C. neoformans, C. gattii y de los polisacáridos capsulares para modular la respuesta proinflamatoria de los macrófagos. Queremos estudiar si el tratamiento de macrófagos con levaduras o polisacárido puede inducir perfiles supresores de la respuesta protectiva T helper 1, tales como linfocitos T helper 2 o T reguladores, favoreciendo la sobrevida intracelular del hongo. Además, pensamos que C. neoformans o C. gattii podrían inducir un activación diferencial de macrófagos lo que condicionaría la respuesta adaptativa, lo que podría explicar las diferencias en la fisiopatogenia de estas dos especies. Procedimientos experimentales -Microorganismos y obtención de GXM: se trabajará con C. neoformans variedad grubii, cepa ATCC 62067 y C. gattii serotipo B, cepa NIH112B. Se obtendrán polisacáridos capsulares (GXM) de C. neoformans y C. gattii por precipitación con etanol y y acomplejamiento selectivo con CTAB. - Obtención de macrófagos murinos y cultivos celulares: se obtendrán macrófagos por lavados peritoneales y/o alveolares de ratones BALB/c. Los macrófagos se cultivarán por 24 h en ausencia o presencia de levaduras muertas o vivas (sin opsonizar u opsonizadas) de C. neoformans o C. gattii o en presencia de GXM purificado. -Objetivo 1. Estudio de la modulación de las propiedades proinflamatorias de Mac: en sobrenadantes de los cultivos se medirán las citoquinas por ELISA de captura y en lisados celulares, la expresión de las enzimas (iNOS, arginasa, IDO) por western blot. Se analizará por citometría de flujo la expresión de MCHII y moléculas CD80, CD86, CD40, CTLA-4. -Objetivo 2. Estudios in vitro de la capacidad de macrófagos tratados con levaduras o GXM para inducir linfocitos Th1, Th2 o Treg: los macrófagos preincubados con GXM o levaduras, se incubarán con linfocitos autólogos estimulados con anti-CD3. Se medirá la proliferación celular y el perfil de citoquinas por citomtría de flujo. Células T CD4+ CD25- serán purificadas de suspenciones esplénicas de ratones normales. Luego las células serán incubadas con macrófagos (sin tratar o tratados con levaduras o GXM) y estimulados con anti-CD3. Se analizará la proliferación celular con CFSE y expresión de CD4, CD25 y Foxp3 . - Objetivo 3. Estudios in vivo de la capacidad de levaduras o GXM para inducir linfocitos Th1, Th2 o Treg . Rol de los macrófagos in vivo: Los ratones serán inyectados con 100000 levaduras o con 200 µg de GXM puro vía endovenosa y luego de 7, 14, 30 y 40 días se evaluarán las poblaciones celulares de bazo, por citometría de flujo usando marcaciones simultáneas para CD4, CD8, CD25, Foxp3 y citoquinas intracelulares. Para investigar la participación in vivo de los macrófagos, se depletaran estas células inyectando los animales con PBS-liposomas o clodronato (DMDP)-liposomas por vía endovenosa o inhalatoria (200- 300 µl por ratón). Luego de 24 h, los animales se infectarán con levaduras o inocularán con GXM y se evaluarán los perfiles de células T esplénicos o de nódulos linfaticos.
Resumo:
Sirtuins (SIRT1-7) are NAD(+)-dependent histone deacetylases (HDACs) that play an important role in the control of metabolism and proliferation and the development of age-associated diseases like oncologic, cardiovascular and neurodegenerative diseases. Cambinol was originally described as a compound inhibiting the activity of SIRT1 and SIRT2, with efficient anti-tumor activity in vivo. Here, we studied the effects of cambinol on microbial sensing by mouse and human immune cells and on host innate immune responses in vivo. Cambinol inhibited the expression of cytokines (TNF, IL-1β, IL-6, IL-12p40, and IFN-γ), NO and CD40 by macrophages, dendritic cells, splenocytes and whole blood stimulated with a broad range of microbial and inflammasome stimuli. Sirtinol, an inhibitor of SIRT1 and SIRT2 structurally related to cambinol, also decreased macrophage response to TLR stimulation. On the contrary, selective inhibitors of SIRT1 (EX-527 and CHIC-35) and SIRT2 (AGK2 and AK-7) used alone or in combination had no inhibitory effect, suggesting that cambinol and sirtinol act by targeting more than just SIRT1 and SIRT2. Cambinol and sirtinol at anti-inflammatory concentrations also did not inhibit SIRT6 activity in in vitro assay. At the molecular level, cambinol impaired stimulus-induced phosphorylation of MAPKs and upstream MEKs. Going well along with its powerful anti-inflammatory activity, cambinol reduced TNF blood levels and bacteremia and improved survival in preclinical models of endotoxic shock and septic shock. Altogether, our data suggest that pharmacological inhibitors of sirtuins structurally related to cambinol may be of clinical interest to treat inflammatory diseases.
Resumo:
Low molecular weight dextran sulfate (DXS) has been reported to inhibit the classical, alternative pathway as well as the mannan-binding lectin pathway of the complement system. Furthermore, it acts as an endothelial cell protectant inhibiting complement-mediated endothelial cell damage. Endothelial cells are covered with a layer of heparan sulfate (HS), which is rapidly released under conditions of inflammation and tissue injury. Soluble HS induces maturation of dendritic cells (DC) via TLR4. In this study, we show the inhibitory effect of DXS on human DC maturation. DXS significantly prevents phenotypic maturation of monocyte-derived DC and peripheral myeloid DC by inhibiting the up-regulation of CD40, CD80, CD83, CD86, ICAM-1, and HLA-DR and down-regulates DC-SIGN in response to HS or exogenous TLR ligands. DXS also inhibits the functional maturation of DC as demonstrated by reduced T cell proliferation, and strongly impairs secretion of the proinflammatory mediators IL-1beta, IL-6, IL-12p70, and TNF-alpha. Exposure to DXS leads to a reduced production of the complement component C1q and a decreased phagocytic activity, whereas C3 secretion is increased. Moreover, DXS was found to inhibit phosphorylation of IkappaB-alpha and activation of NF-kappaB. These findings suggest that DXS prevents TLR-induced maturation of human DC and may therefore be a useful reagent to impede the link between innate and adaptive immunity.
Resumo:
Ligands of the tumor necrosis factor superfamily (TNFSF) (4-1BBL, APRIL, BAFF, CD27L, CD30L, CD40L, EDA1, EDA2, FasL, GITRL, LIGHT, lymphotoxin alpha, lymphotoxin alphabeta, OX40L, RANKL, TL1A, TNF, TWEAK, and TRAIL) bind members of the TNF receptor superfamily (TNFRSF). A comprehensive survey of ligand-receptor interactions was performed using a flow cytometry-based assay. All ligands engaged between one and five receptors, whereas most receptors only bound one to three ligands. The receptors DR6, RELT, TROY, NGFR, and mouse TNFRH3 did not interact with any of the known TNFSF ligands, suggesting that they either bind other types of ligands, function in a ligand-independent manner, or bind ligands that remain to be identified. The study revealed that ligand-receptor pairs are either cross-reactive between human and mouse (e.g. Tweak/Fn14, RANK/RANKL), strictly species-specific (GITR/GITRL), or partially species-specific (e.g. OX40/OX40L, CD40/CD40L). Interestingly, the receptor binding patterns of lymphotoxin alpha and alphabeta are redundant in the human but not in the mouse system. Ligand oligomerization allowed detection of weak interactions, such as that of human TNF with mouse TNFR2. In addition, mouse APRIL exists as two different splice variants differing by a single amino acid. Although human APRIL does not interact with BAFF-R, the shorter variant of mouse APRIL exhibits weak but detectable binding to mouse BAFF-R.
Resumo:
Eosinophils, along with mast cells are key cells involved in the innate immune response against parasitic infection whereas the adaptive immune response is largely dependent on lymphocytes. In chronic parasitic disease and in chronic allergic disease, IL-5 is predominantly a T cell derived cytokine which is particularly important for the terminal differentiation, activation and survival of committed eosinophil precursors. The human IL-5 gene is located on chromosome 5 in a gene cluster that contains the evolutionary related IL-4 family of cytokine genes. The human IL-5 receptor complex is a heterodimer consisting of a unique a subunit (predominantly expressed on eosinophils) and a beta subunit which is shared between the receptors for IL-3 & GM-CSF (more widely expressed). The a subunit is required for ligand-specific binding whereas association with the beta subunit results in increased binding affinity. The alternative splicing of the alphaIL-5R gene which contains 14 exons can yield several alphaIL-5R isoforms including a membrane-anchored isoform (alphaIL-5Rm) and a soluble isoform (alphaIL-5Rs). Cytokines such as IL-5 produce specific and non-specific cellular responses through specific cell membrane receptor mediated activation of intracellular signal transduction pathways which, to a large part, regulate gene expression. The major intracellular signal transduction mechanism is activation of non-receptor associated tyrosine kinases including JAK and MAP kinases which can then transduce signals via a novel family of transcriptional factors named signal transducers and activators of transcription (STATS). JAK2, STAT1 and STAT 5 appear to be particularly important in IL-5 mediated eosinophil responses. Asthma is characterized by episodic airways obstruction, increased bronchial responsiveness, and airway inflammation. Several studies have shown an association between the number of activated T cells and eosinophils in the airways and abnormalities in FEV1, airway reactivity and clinical severity in asthma. It has now been well documented that IL-5 is highly expressed in the bronchial mucosa of atopic and intrinsic asthmatics and that the increased IL-5 mRNA present in airway tissues is predominantly T cell derived. Immunocytochemical staining of bronchial biopsy sections has confirmed that IL-5 mRNA transcripts are translated into protein in asthmatic subjects. Furthermore, the number of activated CD 4 + T cells and IL-5 mRNA positive cells are increased in asthmatic airways following antigen challenge and studies that have examined IL-5 expression in asthmatic subjects before and after steroids have shown significantly decreased expression following oral corticosteroid treatment in steroid-sensitive asthma but not in steroid resistant and chronic severe steroid dependent asthma. The link between T cell derived IL-5 and eosinophil activation in asthmatic airways is further strengthened by the demonstration that there is an increased number of alphaIL-5R mRNA positive cells in the bronchial biopsies of atopic and non-atopic asthmatic subjects and that the eosinophil is the predominant site of this increased alphaIL-5R mRNA expression. We have also shown that the subset of activated eosinophils that expressed mRNA for membrane bound alpha IL5r inversely correlated with FEV1, whereas the subset of activated eosinophils that expressed mRNA for soluble alphaIL5r directly correlated with FEV1. Hence, not only does this data suggest that the presence of eosinophils expressing alphaIL-5R mRNA contribute towards the pathogenesis of bronchial asthma, but also that the eosinophil phenotype with respect to alphaIL-5R isoform expression is of central importance. Finally, there are several animal, and more recently in vitro lung explant, models of allergen induced eosinophilia, late airway responses(LARS), and bronchial hyperresponsiveness(BHR) - all of which support a link between IL-5 and airway eosinophila and bronchial hyperresponsiveness. The most direct demonstration of T cell involvement in LARS is the finding that these physiological responses can be transferred by CD4+ but not CD8+ T cells in rats. The importance of IL-5 in animal models of allergen induced bronchial hyperresponsiveness has been further demonstrated by a number of studies which have indicated that IL-5 administration is able to induce late phase responses and BHR and that anti-IL-5 antibody can block allergen induced late phase responses and BHR. In summary, activated T lymphocytes, IL5 production and eosinophil activation are particularly important in the asthmatic response. Human studies in asthma and studies in allergic animal models have clearly emphasised the unique role of IL-5 in linking T lymphocytes and adaptive immunity, the eosinophil effector cell, and the asthma phenotype. The central role of activated lymphocytes and eosinophils in asthma would argue for the likely therapeutic success of strategies to block T cell and eosinophil activation (eg steroids). Importantly, more targeted therapies may avoid the complications associated with steroids. Such therapies could target key T cell activation proteins and cytokines by various means including blocking antibodies (eg anti-CD4, anti-CD40, anti-IL-5 etc), antisense oligonucleotides to their specific mRNAs, and/or selective inhibition of the promoter sites for these genes. Another option would be to target key eosinophil activation mechanisms including the aIL5r. As always, the risk to benefit ratio of such strategies await the results of well conducted clinical trials.
Resumo:
Dendritic cells (DCs) serve as a link between the innate and adaptive immune systems. The activation state of DCs is crucial in this role. However, when DCs are isolated from lymphoid tissues, purified and placed in culture they undergo 'spontaneous' activation. The basis of this was explored, using up-regulation of DC surface MHC II, CD40, CD80 and CD86 as indicators of DC activation. No evidence was found for DC damage during isolation or for microbial products causing the activation. The culture activation of spleen DCs differed from that of Langerhans cells when released from E-cadherin-mediated adhesions, since E-cadherin was not detected and activation still occurred with β-catenin null DCs. Much of the activation could be attributed to DC-DC interactions. Although increases in surface MHC II levels occurred under all culture conditions tested, the increase in expression of CD40, CD80 and CD86 was much less under culture conditions where such interactions were minimised. DC-to-DC contact under the artificial conditions of high DC concentration in culture induced the production of soluble factors and these, in turn, induced the up-regulation of co-stimulatory molecules on the DC surface.
Resumo:
Immunoglobulin (Ig) A represents the predominant antibody isotype produced at the intestinal mucosa, where it plays an important role in limiting the penetration of commensal intestinal bacteria and opportunistic pathogens. We show in mice that Peyer's Patch-derived dendritic cells (PP-DC) exhibit a specialized phenotype allowing the promotion of IgA production by B2 cells. This phenotype included increased expression of the retinaldehyde dehydrogenase 1 (RALDH1), inducible nitric oxide synthase (iNOS), B cell activating factor of the tumor necrosis family (BAFF), a proliferation-inducing ligand (APRIL), and receptors for the neuropeptide vasoactive intestinal peptide (VIP). The ability of PP-DC to promote anti-CD40 dependent IgA was partially dependent on retinoic acid (RA) and transforming growth factor (TGF)-beta, whilst BAFF and APRIL signaling were not required. Signals delivered by BAFF and APRIL were crucial for CD40 independent IgA production, although the contribution of B2 cells to this pathway was minimal. The unique ability of PP-DC to instruct naïve B cells to differentiate into IgA producing plasma cells was mainly imparted by the presence of intestinal commensal bacteria, and could be mimicked by the addition of LPS to the culture. These data indicate that exposure to pathogen-associated molecular patterns present on intestinal commensal bacteria condition DC to express a unique molecular footprint that in turn allows them to promote IgA production.
Abnormal expression of CD54 in mixed reactions of mononuclear cells from hyper-IgE syndrome patients
Resumo:
Hyper-IgE syndrome (HIES) is a rare multisystem disorder characterized by increased susceptibility to infections associated with heterogeneous immunologic and non-immunologic abnormalities. Most patients consistently exhibit defective antigen-induced-T cell activation, that could be partly due to altered costimulation involving accessory molecules; however, the expression of these molecules has never been documented in HIES. Therefore, we investigated the expression of CD11a, CD28, CD40, CD54, CD80, CD86, and CD154 in peripheral blood mononuclear cells from six patients and six healthy controls by flow cytometry after autologous and mixed allogeneic reactions. Only the allogeneic stimuli induced significant proliferative responses and interleukin 2 and interferon gamma production in both groups. Most accessory molecules showed similar expression between patients and controls with the exception of CD54, being expressed at lower levels in HIES patients regardless of the type of stimulus used. Decreased expression of CD54 could partly explain the deficient T cell activation to specific recall antigens in HIES patients, and might be responsible for their higher susceptibility to infections with defined types of microorganisms.
Resumo:
Establishment of mixed chimerism through transplantation of allogeneic donor bone marrow (BM) into sufficiently conditioned recipients is an effective experimental approach for the induction of transplantation tolerance. Clinical translation, however, is impeded by the lack of feasible protocols devoid of cytoreductive conditioning (i.e. irradiation and cytotoxic drugs/mAbs). The therapeutic application of regulatory T cells (Tregs) prolongs allograft survival in experimental models, but appears insufficient to induce robust tolerance on its own. We thus investigated whether mixed chimerism and tolerance could be realized without the need for cytoreductive treatment by combining Treg therapy with BM transplantation (BMT). Polyclonal recipient Tregs were cotransplanted with a moderate dose of fully mismatched allogeneic donor BM into recipients conditioned solely with short-course costimulation blockade and rapamycin. This combination treatment led to long-term multilineage chimerism and donor-specific skin graft tolerance. Chimeras also developed humoral and in vitro tolerance. Both deletional and nondeletional mechanisms contributed to maintenance of tolerance. All tested populations of polyclonal Tregs (FoxP3-transduced Tregs, natural Tregs and TGF-beta induced Tregs) were effective in this setting. Thus, Treg therapy achieves mixed chimerism and tolerance without cytoreductive recipient treatment, thereby eliminating a major toxic element impeding clinical translation of this approach.
Resumo:
Purpose/Objective: Histone deacetylases (HDACs) deacetylate histones and transcriptional regulators thereby affecting numerous biological functions. Seven mammalian sirtuins (SIRT1-7) constitute the NAD-dependent class III subfamily of HDACs. Sirtuins are the center of great interest due to their regulatory role in the control of metabolism, ageing and age-related diseases. Up to now, little is known about the influence of sirtuins on immune responses, and nothing about the role of SIRT2. The aim of the study was to analyze the influence of SIRT2 knockout on immune cell development and innate immune responses in vitro and in vivo. Materials and methods: SIRT2 germline knockout were produced on a C57BL/6J background. The cellularity of thymus and spleen was assessed by flow cytometry (n = 3). Bone marrow derived macrophages (BMDMs) and dendritic cells (BMDCs) and splenocytes were stimulated with LPS, Pam3CSK4 lipopeptide, CpG ODN, E. coli, S. aureus, TSST-1, SEB, anti-CD3+ CD28 and concanavalin A (n = 3_8). TNF, IL-2, IL-6, IL-12p40 and IFNc production, SIRT1_7 and CD40 expression, and proliferation were quantified by real time-PCR, ELISA, flow cytometry and H3-thymidine incorporation. Mice (n = 6_16) were challenged with LPS, TNF/D-galactosamine, E. coli and K. pneumonia titrated to cause either mild or severe infections or shock. Blood was collected to quantify cytokines and bacteria. Mortality was checked regularly. Results: SIRT2 is the most expressed sirtuin in macrophages and myeloid DCs. To test whether SIRT2 impacts on innate immune responses, we generated SIRT2 germline knockout mice. SIRT2-/- mice born at the expected Mendelian ratio and develop normally. The proportions and absolute numbers of DN1-4, DP and SP thymocytes, and of T-cells (DN and SP, naı¨ve and memory), B-cells (immature and mature), DCs (cDCs and pDCs) and granulocytes in the spleen are similar in SIRT2+/+ and SIRT2-/- mice. SIRT2+/+ and SIRT2-/- BMDMs, BMDCs and splenocytes produce cytokines (RNA and protein), upregulate CD40, and proliferate to the same extent. SIRT2+/+ and SIRT2-/- mice respond similarly (cytokine blood levels, bacterial counts and mortality) to non-severe and lethal endotoxemia, E. coli peritonitis, K. pneumonia pneumonia and TNF-induced shock. Conclusions: SIRT2 knockout has no dramatic impact on the development of immune cells and on innate immune responses in vitro and in vivo. Considering that SIRT2 may participate to control metabolic homeostasis, we are currently assessing the impact of SIRT2 deficiency on innate immune responses under metabolic stress.