86 resultados para CCl4
Resumo:
The effects of a Chinese snake venom preparation from Agkistrodon halys pallas, used for treatment of hepatic fibrosis/cirrhosis in China, was investigated in an {in vivo} rat model and using in situ hepatic perfusion. Four groups were used in the experiments: (i) healthy, (ii) healthy/venom-treated, (iii) carbon tetrachloride (CCl4)-treated, and (iv) CCl4/venom-treated. Treatment effects were assessed by determining hepatic histopathology, biochemistry and fibrosis index parameters, bile production, biliary taurocholate recovery, hepatic mRNA expression of four bile salt transporters (Ntcp, Bsep, Oatp-1, and Oatp-3), comparison of hepatic microcirculation, fibrinolytic activity, and antithrombotic effects. Liver histopathology, biochemistry, and fibrosis index showed a dramatic improvement in venom-treated animals. There were significant differences in bile production between healthy/venom-treated and all other experimental groups and between CCl4/venom-treated and CCl4-treated animals, but no significant differences were found between CCl4/venom-treated and healthy animals. Biliary taurocholate recovery was significantly increased in healthy/venom-treated and CCl4/venom-treated animals. The expression of mRNA levels of the four bile salt transporters showed an increase after venom treatment. The hepatic microcirculation studies showed normalized sinusoidal beds in CCl4/venom-treated animals compared to healthy animals, whereas CCl4-treated animals showed abnormal profiles to the healthy and the CCl4/AHPV-treated animals. The fibrinogen and plasma thromboxane B-2 levels of healthy rats decreased with increasing dose after venom treatment. It was concluded that snake venom treatment may be therapeutic in treatment of hepatic fibrosis/cirrhosis by possibly a combination of increased bile flow and improved hepatic microcirculation, changes in bile salt transporter expression, and fibrinolytic and antithrombotic effects of the snake venom preparation.
Resumo:
In this paper we investigate the difference between the adsorption of spherical molecule argon (at 87.3 K) and the flexible normal butane (at an equivalent temperature of 150 K) in carbon slit pores. These temperatures are equivalent in the sense that they have the same relative distances between their respective triple points and critical points. Higher equivalent temperatures are also studied (122.67 K for argon and 303 K for n-butane) to investigate the effects of temperature on the 2D-transition in adsorbed density. The Grand Canonical Monte Carlo simulation is used to study the adsorption of these two model adsorbates. Beside the longer computation times involved in the computation of n-butane adsorption, n-butane exhibits many interesting behaviors such as: (i) the onset of adsorption occurs sooner (in terms of relative pressure), (ii) the hysteresis for 2D- and 3D-transitions is larger, (iii) liquid-solid transition is not possible, (iv) 2D-transition occurs for n-butane at 150 K while it does not happen for argon except for pores that accommodate two layers of molecules, (v) the maximum pore density is about four times less than that of argon and (vi) the sieving pore width is slightly larger than that for argon. Finally another feature obtained from the Grand Canonical Monte Carlo (GCMC) simulation is the configurational arrangement of molecules in pores. For spherical argon, the arrangement is rather well structured, while for n-butane the arrangement depends very much on the pore size. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The performance of intermolecular potential models on the adsorption of carbon tetrachloride on graphitized thermal carbon black at various temperatures is investigated. This is made possible with the extensive experimental data of Machin and Ross(1), Avgul et al.,(2) and Pierce(3) that cover a wide range of temperatures. The description of all experimental data is only possible with the allowance for the surface mediation. If this were ignored, the grand canonical Monte Carlo (GCMC) simulation results would predict a two-dimensional (2D) transition even at high temperatures, while experimental data shows gradual change in adsorption density with pressure. In general, we find that the intermolecular interaction has to be reduced by 4% whenever particles are within the first layer close to the surface. We also find that this degree of surface mediation is independent of temperature. To understand the packing of carbon tetrachloride in slit pores, we compared the performance of the potential models that model carbon tetrachloride as either five interaction sites or one site. It was found that the five-site model performs better and describes the imperfect packing in small pores better. This is so because most of the strength of fluid-fluid interaction between two carbon tetrachloride molecules comes from the interactions among chlorine atoms. Methane, although having tetrahedral shape as carbon tetrachloride, can be effectively modeled as a pseudospherical particle because most of the interactions come from carbon-carbon interaction and hydrogen negligibly contributes to this.
Resumo:
Halocarbons, halogenated short-chained hydrocarbons, are produced naturally in the oceans by biological and chemical processes. They are emitted from surface seawater into the atmosphere, where they take part in numerous chemical processes such as ozone destruction and the oxidation of mercury and dimethyl sulfide. Here we present oceanic and atmospheric halocarbon data for the Peruvian upwelling obtained during the M91 cruise onboard the research vessel Meteor in December 2012. Surface waters during the cruise were characterized by moderate concentrations of bromoform (CHBr3) and dibromomethane (CH2Br2) correlating with diatom biomass derived from marker pigment concentrations, which suggests this phytoplankton group as likely source. Concentrations measured for the iodinated compounds methyl iodide (CH3I) of up to 35.4 pmol L-1, chloroiodomethane (CH2ClI) of up to 58.1 pmol L-1 and diiodomethane (CH2I2) of up to 32.4 pmol L-1 in water samples were much higher than previously reported for the tropical Atlantic upwelling systems. Iodocarbons also correlated with the diatom biomass and even more significantly with dissolved organic matter (DOM) components measured in the surface water. Our results suggest a biological source of these compounds as significant driving factor for the observed large iodocarbon concentrations. Elevated atmospheric mixing ratios of CH3I (up to 3.2 ppt), CH2ClI (up to 2.5 ppt) and CH2I2 (3.3 ppt) above the upwelling were correlated with seawater concentrations and high sea-to-air fluxes. The enhanced iodocarbon production in the Peruvian upwelling contributed significantly to tropospheric iodine levels.
Resumo:
BACKGROUND: We report the use of an ex vivo precision cut liver slice (PCLS) mouse model for studying hepatic schistosomiasis. In this system, liver tissue is unfixed, unfrozen, and alive for maintenance in culture and subsequent molecular analysis.
METHODS AND FINDINGS: Using thick naive mouse liver tissue and sterile culture conditions, the addition of soluble egg antigen (SEA) derived from Schistosoma japonicum eggs, followed 4, 24 and 48 hrs time points. Tissue was collected for transcriptional analysis and supernatants collected to quantitate liver enzymes, cytokines and chemokines. No significant hepatotoxicity was demonstrated by supernatant liver enzymes due to the presence of SEA. A proinflammatory response was observed both at the transcriptional level and at the protein level by cytokine and chemokine bead assay. Key genes observed elevated transcription in response to the addition of SEA included: IL1-α and IL1-β, IL6, all associated with inflammation. The recruitment of antigen presenting cells was reflected in increases in transcription of CD40, CCL4 and CSF1. Indications of tissue remodeling were seen in elevated gene expression of various Matrix MetalloProteinases (MMP3, 9, 10, 13) and delayed increases in TIMP1. Collagen deposition was significantly reduced in the presence of SEA as shown in COL1A1 expression by qPCR after 24 hrs culture. Cytokine and chemokine analysis of the culture supernatants confirmed the elevation of proteins including IL6, CCL3, CCL4 and CXCL5.
CONCLUSIONS: This ex vivo model system for the synchronised delivery of parasite antigen to liver tissue provides an insight into the early phase of hepatic schistosomiasis, corresponding with the release of soluble proteins from dying schistosome eggs.
Resumo:
Silicon carbide (SiC) is a promising material for electronics due to its hardness, and ability to carry high currents and high operating temperature. SiC films are currently deposited using chemical vapor deposition (CVD) at high temperatures 1500–1600 °C. However, there is a need to deposit SiC-based films on the surface of high aspect ratio features at low temperatures. One of the most precise thin film deposition techniques on high-aspect-ratio surfaces that operates at low temperatures is atomic layer deposition (ALD). However, there are currently no known methods for ALD of SiC. Herein, the authors present a first-principles thermodynamic analysis so as to screen different precursor combinations for SiC thin films. The authors do this by calculating the Gibbs energy ΔGΔG of the reaction using density functional theory and including the effects of pressure and temperature. This theoretical model was validated for existing chemical reactions in CVD of SiC at 1000 °C. The precursors disilane (Si2H6), silane (SiH4), or monochlorosilane (SiH3Cl) with ethyne (C2H2), carbontetrachloride (CCl4), or trichloromethane (CHCl3) were predicted to be the most promising for ALD of SiC at 400 °C.
Resumo:
Este trabalho propõe o desenvolvimento de métodos de preparo de amostra empregando a microextração líquido-líquido dispersiva (DLLME) para a extração e pré- concentração de Fe e Cu em vinho, seguido da determinação espectrofotométrica na região do ultravioleta-visível (UV-Vis). Nas extrações por DLLME, a complexação de Fe e Cu foi feita com pirrolidina ditiocarbamato de amônio (APDC) e dietilditiocarbamato de sódio (DDTC), respectivamente. Para a DLLME, foi usada uma mistura apropriada de pequenos volumes de dois solventes, um extrator e outro dispersor, a qual foi rapidamente injetada na amostra aquosa, ocorrendo à formação de uma dispersão e a extração praticamente instantânea dos analitos. Na otimização da DLLME para extração de Fe foram avaliados alguns parâmetros como, tipo de solvente extrator (C2Cl4, 80 µL) e dispersor (acetonitrila, 1300 µL) e seus volumes, pH (3,0), concentração do APDC (1%, m/v), adição de NaCl (0,02 mol L -1 ) e tempo de extração. Para extração de Cu foi aplicado um planejamento fatorial completo 25 para avaliar a influência de cinco variáveis independentes: volume dos solventes dispersor (acetonitrila, 1600 µL) e extrator (CCl4, 60 µL), concentração de DDTC (2%, m/v), pH (3,0) e concentração de NaCl. Após a otimização das condições para Fe, a curva de calibração com adição de analito foi linear entre 0,2 e 2,5 mg L-1 para vinho branco (R2 = 0,9985) e para vinho tinto (R2 = 0,9988). Para Cu, a curva de calibração com adição de analito foi linear entre 0,05 e 1,0 mg L-1 para vinho branco (R2 = 0,9995) e para vinho tinto (R2 = 0,9986). Os limites de quantificação foram de 0,75 e 0,37 mg L-1 para Fe e Cu, respectivamente. A exatidão foi avaliada utilizando ensaio de recuperação, as quais variaram entre 96% e 112%, com desvio padrão relativo inferior a 8%. Os métodos foram aplicados para 5 amostras de vinho branco e 5 amostras de vinho tinto, obtendo-se concentrações entre 1,3 e 5,3 e entre 2,5 e 4,4 mg L-1 para Fe e entre 0,4 e 1,5 e entre 0,9 e 2,5 mg L-1 para Cu, respectivamente. Os métodos desenvolvidos para a extração e pré-concentração de Fe e Cu em vinhos por DLLME e quantificação por UV-Vis mostraram-se adequados, em termos de linearidade, exatidão e precisão.
Resumo:
This study examines the physical and chemical composition and the pharmacological effects of brown seaweed FRF 0.8 Lobophora variegata. Fractionation of the crude extract was done with the concentration of 0.8 volumes of acetone, obtaining the FRF 0.8. The physicochemical characterization showed that it was a fucana sulfated. Anti-inflammatory activity was assessed by paw edema model by the high rates of inhibition of the edema and the best results were in the fourth hour after induction (100 ± 1.4% at the dose of 75 mg / kg) and by the strong inhibitory activity of the enzyme myeloperoxidase (91.45% at the dose of 25 mg / kg). The hepataproteção was demonstrated by measurements of enzymatic and metabolic parameters indicative of liver damage, such as bilirubin (reduction in 68.81%, 70.68% and 68.21% for bilirubin total, direct and indirect, respectively at a dose of 75 mg / kg), ALT, AST and γ-GT (decrease of 76.93%, 44.58% and 50% respectively at a dose of 75 mg / kg) by analysis of histological slides of liver tissue, confirming that hepatoprotective effect the polymers of carbohydrates, showing a reduction in tissue damage caused by CCl4 and the inhibition of the enzyme complex of cytochrome P 450 (increasing sleep time in 54.6% and reducing the latency time in 71.43%). The effectiveness of the FRF 0.8 angiogenesis was examined in chorioallantoic membrane (CAM) of fertilized eggs, with the density of capillaries evaluated and scored, showing an effect proangigênico at all concentrations tested FRF (10 mg- 1000 mg). The FRF showed antioxidant activity on free radicals (by inhibiting Superoxide Radical in 55.62 ± 2.10%, Lipid Peroxidation in 100.15 ± 0.01%, Hydroxyl Radical in 41.84 ± 0.001% and 71.47 Peroxide in ± 2.69% at concentration of 0.62 mg / mL). The anticoagulant activity was observed with prolongation of activated partial thromboplastin time (aPTT) at 50 mg (> 240 s), showing that its action occurs in the intrinsic pathway of the coagulation cascade. Thus, our results indicate that these sulfated polysaccharides are an important pharmacological target
Resumo:
Purpose: To investigate the protective effect of rhamnopyranosyl vanilloyl (RV) from Scrophularia ningpoensis root against tetrachloromethane (CCl4)-induced acute liver injury (ALI) in mice. Methods: RV was isolated from S. ningpoensis by column chromatography. ALI model of mice was established by intraperitoneal injection of CCl4. Liver index, liver function indices, as well as serum alanine transaminase (ALT), aspartate aminotransferase (AST) and total bilirubin (TBIL) were evaluated. Lipid peroxidation (LPO)-related indices, including malonaldehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Apoptotic proteins (Bcl-2, Bax and caspase-3) in liver tissue were determined by enzyme-linked immunosorbent assay (ELISA) and Western blot. Results: After treatment with RV (10, 20 or 40 mg/kg), liver index (5.65 - 5.21 vs. 6.68 %), ALT (90.18 - 79.68 vs. 112.47 U/L), AST (64.44 - 57.63 vs. 75.41 U/L) and TBIL (2.68 - 1.95 vs. 3.21 U/L) activities, as well as MDA (3.58 - 2.88 vs. 4.13 μmol/g), Bax and caspase-3 levels significantly (p < 0.05 or 0.01) decreased, compared with those in control group. After treatment with RV (10, 20 or 40 mg/kg), GSH (16.58 - 22.14 vs. 12.34 μmol/g), Bcl-2, SOD (86.45 - 107.61 vs. 68.43 U/mg) and GSH-Px (295.64 - 329.47 vs. 268.49 U/mg) levels or activities significantly (p < 0.05 or 0.01) increased, compared with those in control group. Conclusion: RV has protective effect against CCl4-induced ALI in mice, and the mechanisms involve the inhibition of LPO and apoptosis in liver cells. Thus, RV is a potential drug for the treatment of liver injury
Resumo:
The porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important swine pathogens and often serves as an entry door for other viral or bacterial pathogens, of which Streptococcus suis is one of the most common. Pre-infection with PRRSV leads to exacerbated disease caused by S. suis infection. Very few studies have assessed the immunological mechanisms underlying this higher susceptibility. Since antigen presenting cells play a major role in the initiation of the immune response, the in vitro transcriptional response of bone marrow-derived dendritic cells (BMDCs) and monocytes in the context of PRRSV and S. suis co-infection was investigated. BMDCs were found to be more permissive than monocytes to PRRSV infection; S. suis phagocytosis by PRRSV-infected BMDCs was found to be impaired, whereas no effect was found on bacterial intracellular survival. Transcription profile analysis, with a major focus on inflammatory genes, following S. suis infection, with and without pre-infection with PRRSV, was then performed. While PRRSV pre-infection had little effect on monocytes response to S. suis infection, a significant expression of several pro-inflammatory molecules was observed in BMDCs pre-infected with PRRSV after a subsequent infection with S. suis. While an additive effect could be observed for CCL4, CCL14, CCL20, and IL-15, a distinct synergistic up-regulatory effect was observed for IL-6, CCL5 and TNF-α after co-infection. This increased pro-inflammatory response by DCs could participate in the exacerbation of the disease observed during PRRSV and S. suis co-infection.
Resumo:
The porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important swine pathogens and often serves as an entry door for other viral or bacterial pathogens, of which Streptococcus suis is one of the most common. Pre-infection with PRRSV leads to exacerbated disease caused by S. suis infection. Very few studies have assessed the immunological mechanisms underlying this higher susceptibility. Since antigen presenting cells play a major role in the initiation of the immune response, the in vitro transcriptional response of bone marrow-derived dendritic cells (BMDCs) and monocytes in the context of PRRSV and S. suis co-infection was investigated. BMDCs were found to be more permissive than monocytes to PRRSV infection; S. suis phagocytosis by PRRSV-infected BMDCs was found to be impaired, whereas no effect was found on bacterial intracellular survival. Transcription profile analysis, with a major focus on inflammatory genes, following S. suis infection, with and without pre-infection with PRRSV, was then performed. While PRRSV pre-infection had little effect on monocytes response to S. suis infection, a significant expression of several pro-inflammatory molecules was observed in BMDCs pre-infected with PRRSV after a subsequent infection with S. suis. While an additive effect could be observed for CCL4, CCL14, CCL20, and IL-15, a distinct synergistic up-regulatory effect was observed for IL-6, CCL5 and TNF-α after co-infection. This increased pro-inflammatory response by DCs could participate in the exacerbation of the disease observed during PRRSV and S. suis co-infection.