997 resultados para CA-MN-O


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The neodymium (Nd) isotope composition of ancient seawater is a potentially useful tracer of changes in continental inputs and ocean circulation on timescales of a few ka. Here we present the first Nd isotope record for seawater using sedimentary foraminifera cleaned using standard oxidative-reductive techniques. The data, along with Mn/Ca ratios, suggest that cleaned foraminifera provide a reliable record of Nd in seawater and hold out the prospect of using Nd in foraminifera to examine changes in seawater that accompany glacial-interglacial climatic cycles. The principal potential problem to be overcome with the use of forams as records of trace elements in ancient seawater is their diagenetic Fe-Mn coatings. These contain large amounts of Nd and other trace elements but can be cleaned off using highly reducing reagents. Mn(Ca ratios for the majority of the cleaned sedimentary foraminifera analysed here lie within the range (10-100 µmol/mol) that has yielded success in studies of transition elements in forams. Mass-balance modelling suggests that for residual Mn/Ca ratios <100 µmol/mol, Nd added to the foram in the coating will never shift the measured Nd isotope composition significantly away from the seawater value acquired by the foram test in the water column. Additionally, Nd concentrations measured in cleaned sedimentary foraminifera are comparable with those for a modern sample that has never encountered diagenetic fluids. Finally, core-top planktonic foraminifera for two sites have Nd isotope compositions that are identical to local surface seawater. The data we present here for Labrador Sea forams over the past 2.5 m.y. are interpreted in terms of changes in the seawater isotopic composition. The data show a pronounced shift from epsilon-Nd values of ~-12 to ~-19 in the period 2.5-1.5 Ma. This change is interpreted to result from the initiation of Northern Hemisphere glaciation and the increased derivation of Labrador Sea Nd via ice-rafting from Archaean terranes in central Canada. In combination with stable isotope and foraminiferal relative species abundance data, the new Nd data are consistent with the surface hydrography of the Labrador Sea being dominated by a fluctuating balance between cold, polar waters containing unradiogenic Nd and warm, subtropical waters containing more radiogenic Nd. The major change in Labrador Sea Nd that is observed in the past 2.5 Ma can, on its own, account for the change in the Nd isotope composition of North Atlantic Deep Water over the same time period.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The late Miocene carbon shift (~6.2 Myr) -a 0.5-1.0 per mil, d13C decrease in benthic and planktonic foraminifera- has been ascribed to changes in global inventory, deep-ocean circulation, and/or productivity. Cadmium, d13C, and nutrients in the ocean are linked; comparison of d13C and Cd/Ca yields circulation and chemical inventory information not available from either alone. We determined Cd/Ca ratios in late Miocene benthic foraminifera from DSDP Site 289. Results include: (1) late Miocene Pacific Cd/Ca values fall between those of late Quaternary Atlantic and Pacific benthic foraminifera; (2) there are no systematic Cd/Ca offsets between Cibicidoides kullenbergi, Cibicidoides wuellerstorfi and Uvigerina spp.; and (3) there is a very slight Cd/Ca change coincident with d13C. Cd/Ca, slightly higher in younger, isotopically lighter samples, exhibits a smaller increase than predicted if circulation were the primary cause of the carbon shift. The carbon shift may have been due to a long-term shift in the steady-state carbon isotope input or to a change in the sedimentation of organic carbon relative to calcium carbonate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The produced water is a byproduct formed due to production of petroleum and carries with it a high amount of contaminants such as oil particles in suspension, organic compounds and metals. Thus, these latter pollutants are very difficult to treat because of its high solubility in water. The objective of this work is to use and evaluate a microemulsioned system to remove metals ( K , Mg , Ba , Ca , Cr , Mn , Li , Fe ) of synthetic produced water. For the extraction of metals, it was used a pseudoternary diagram containing the following phases: synthetic produced water as the aqueous phase (AP), hexane as organic phase (OP), and a cosurfactant/surfactant ratio equal to four (C/S = 4) as the third phase, where the OCS (saponified coconut oil) was used as surfactant and n-butanol as cosurfactant. The synthetic produced water was prepared in a bench scale and the region of interest in the diagram for the removal of metals was determined by experimental design called. Ten points located in the phase Winsor II were selected in an area with a large amount of water and small amounts of reagents. The samples were analyzed in atomic absorption spectrometer, and the results were evaluated through a statistical assesment, allowing the efficiency analysis of the effects and their interactions. The results showed percentages of extraction above 90% for the metals manganese, iron, chromium, calcium, barium and magnesium, and around 45% for metals lithium and potassium. The optimal point for the simultaneous removal of metals was calculated using statistical artifact multiple response function (MR). This calculation showed that the point of greatest extraction of metals occurs was the J point, with the composition [72% AP, 9% OP, 19% C/S], obtaining a global extraction percentage about 80%. Considering the aspects analyzed, the microemulsioned system has shown itself to be an effective alternative in the extraction of metals on synthetic produced water remediation