1000 resultados para C. wuellerstorfi d18O


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep-sea benthic foraminiferal assemblages from Ocean Drilling Program (ODP) Site 1143 located in the southern South China Sea (SCS) were investigated to evaluate the relationship between faunal composition patterns and paleoceanographic changes during the last 6 million years (late Miocene to Holocene). We used multivariate statistics (correspondence analysis) to analyze carbon-flux-related changes in assemblage composition of benthic foraminifers. Additional proxies for carbon flux and deep-water ventilation include delta13C records of epifaunal Cibicidoides wuellerstorfi and infaunal Uvigerina peregrina var. dirupta and Melonis pompilioides, benthic foraminiferal accumulation rates (BFARs), diversity indices, and relative abundances of indicator species. We observe three significant benthic faunal changes in the southern South China Sea during the last 6 million years. Strong fluctuations in BFAR and relative abundance of productivity indicator species between glacial and interglacial stages after the mid-Pleistocene revolution (MPR) at approximately 0.9 Ma, indicating stronger seasonal carbon flux fluctuations, are accompanied by the extinction of such species as Stilostomella spp. Increases in carbon flux indicator species are coupled with an overall decrease in benthic foraminifer diversity around 3.0 Ma in the late Pliocene. This may indicate increasing carbon flux in a period of productivity maximum caused by enhanced offshore upwelling from intensified winter monsoon wind strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A depth transect of cores from 1268 to 3909 m water depth in the western South Atlantic are ideally situated to monitor the interocean exchange of deep water and variations in the relative strength of northern and southern sources of deep water production. Benthic foraminiferal Cd/Ca and d13C data suggest that Glacial North Atlantic Intermediate Water (GNAIW) extended at least as far south as 28°S in the western South Atlantic. The core of nutrient-depleted water was situated at ~1500 m, above and below water masses with higher nutrient concentrations. When examined in conjunction with published paired Cd/Ca and d13C from intermediate depth cores from other basins, it appears that the extent of GNAIW influence on the intermediate waters of the world's oceans was less than suggested previously. Differentiating among possible pathways for the glacial deep ocean (>3 km) requires a better understanding of the controls on Cd/Ca and d13C values of benthic foraminifera.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen and carbon isotope ratios were measured in benthic foraminifers from the entire Pliocene and latest Miocene sections of Site 846, a 180-m section, at a sampling interval of 10 cm. This provides a temporal resolution of about 2500 yr. The documented continuity of the record is excellent. Using the time scale that was developed on the basis of orbital tuning of GRAPE density records, we observed a fairly constant phase relationship between delta18O and variations in the obliquity of Earth's rotational axis. A new numbering scheme for Pliocene isotope stages is proposed. This high-resolution delta18O record clarifies several interesting aspects of late Neogene climatic evolution, including a "glacial" event that may have caused the final Messinian desiccation of the Mediterranean Sea; one or more "interglacial" events that might have caused refilling of the Mediterranean; a well-resolved couplet of glacial events at about the age of the Sidujfall Subchron; interglacial extremes in the early part of the Gauss that could have resulted from either significant deglaciation on Antarctica or from warming of deep water; and a gradual ramp of increasingly extreme "glacial" events, starting at about the Kaena Subchron and culminating with delta18O stage 100 in the earliest Matuyama.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore the applicability of paired Mg/Ca and 18O/16O measurements on benthic foraminifera from Southern Ocean site 747 to paleoceanographic reconstructions on pre-Pleistocene timescales. We focus on the late Oligocene through Pleistocene (27-0 Ma) history of paleotemperatures and the evolution of the d18O values of seawater (d18Osw) at a temporal resolution of ~100-200 kyr. Absolute paleotemperature estimates depend on assumptions of how Mg/Ca ratios of seawater have changed over the past 27 Myr, but relative changes that occur on geologically brief timescales are robust. Results indicate that at the Oligocene to Miocene boundary (23.8 Ma), temperatures lag the increase in global ice-volume deduced from benthic foraminiferal d18O values, but the smaller-scale Miocene glaciations are accompanied by ocean cooling of -1°C. During the mid-Miocene phase of Antarctic ice sheet growth (~15-13 Ma), water temperatures cool by ~3°C. Unlike the benthic foraminiferal d18O values, which remain relatively constant thereafter, temperatures vary (by 3°C) and reach maxima at ~12 and ~8.5 Ma. The onset of significant Northern Hemisphere glaciation during the late Pliocene is synchronous with an ~4°C cooling at site 747. A comparison of our d18Osw curve to the Haq et al. (1987, doi:10.1126/science.235.4793.1156 ) sea level curve yields excellent agreement between sequence boundaries and times of increasing seawater 18O/16O ratios. At ~12-11 Ma in particular, when benthic foraminiferal d18O values do not support a further increase in ice volume, the d18Osw curve comes to a maximum that corresponds to a major mid-Miocene sea level regression. The agreement between the character of our Mg/Ca-based d18Osw curve and sequence stratigraphy demonstrates that benthic foramaniferal Mg/Ca ratios can be used to trace the d18Osw on pre-Pleistocene timescales despite a number of uncertainties related to poorly constrained temperature calibrations and paleoseawater Mg/Ca ratios. The Mg/Ca record also highlights that deep ocean temperatures can vary independently and unexpectedly from ice volume changes, which can lead to misinterpretations of the d18O record.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic foraminiferal stable carbon isotope records from the South Atlantic show significant declines toward more "Pacific-like" values at ~7 and ~2.7 Ma, and it has been posited that these shifts may mark steps toward increased CO2 sequestration in the deep Southern Ocean as climate cooled over the late Neogene. We generated new stable isotope records from abyssal subantarctic Pacific cores MV0502-4JC and ELT 25-11. The record from MV0502-4JC suggests that the Southern Ocean remained well mixed and free of vertical or interbasinal d13C gradients following the late Miocene carbon shift (LMCS). According to the records from MV0502-4JC and ELT 25-11, however, cold, low d13C bottom waters developed in the Southern Ocean in the late Pliocene and persisted until ~1.7 Ma. These new data suggest that while conditions in the abyssal Southern Ocean following the LMCS were comparable to the present day, sequestration of respired CO2 may have increased in the deepest parts of the Southern Ocean during the late Pliocene, a critical period for the growth and establishment of the Northern Hemisphere ice sheets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of the northwest African hydrological balance throughout the Pleistocene epoch influenced the migration of prehistoric humans**1. The hydrological balance is also thought to be important to global teleconnection mechanisms during Dansgaard-Oeschger and Heinrich events**2. However, most high-resolution African climate records do not span the millennial-scale climate changes of the last glacial-interglacial cycle**1, 3, 4, 5, or lack an accurate chronology**6. Here, we use grain-size analyses of siliciclastic marine sediments from off the coast of Mauritania to reconstruct changes in northwest African humidity over the past 120,000 years. We compare this reconstruction to simulations of palaeo-humidity from a coupled atmosphere-ocean-vegetation model. These records are in good agreement, and indicate the reoccurrence of precession-forced humid periods during the last interglacial period similar to the Holocene African Humid Period. We suggest that millennial-scale arid events are associated with a reduction of the North Atlantic meridional overturning circulation and that millennial-scale humid events are linked to a regional increase of winter rainfall over the coastal regions of northwest Africa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isotopic and micropaleontological deglacial records of three deep-sea cores from 44°S to 55°S have been dated by accelerator mass spectrometry. The available records did not allow accurate dating of the initiation of the deglaciation. By 13,000 years B.P., sea surface temperatures reached values similar to the present values. A cool oscillation abruptly interrupted this warm phase between 12,000 and 11,000 years B.P. Initiation of this cooling therefore preceded the northern hemisphere Younger Dryas by approximately 1000 years. Complete warming was reached by 10,000 years B.P., more or less synchronous with the northeast Atlantic Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the late Pliocene-middle Pleistocene, 63 species of elongate, bathyal-upper abyssal benthic foraminifera (Extinction Group = Stilostomellidae, Pleurostomellidae, some Nodosariidae) declined in abundance and finally disappeared in the northern Indian Ocean (ODP Sites 722, 758), as part of the global extinction of at least 88 related species at this time. The detailed record of withdrawal of these species differs by depth and geography in the Indian Ocean. In northwest Indian Ocean Site 722 (2045 m), the Extinction Group of 54 species comprised 2-15% of the benthic foraminiferal fauna in the earliest Pleistocene, but declined dramatically during the onset of the mid-Pleistocene Transition (MPT) at 1.2-1.1 Ma, with all but three species disappearing by the end of the MPT (~0.6 Ma). In northeast Indian Ocean Site 758 (2925 m), the Extinction Group of 44 species comprised 1-5% of the benthic foraminiferal fauna at ~3.3-2.6 Ma, but declined in abundance and diversity in three steps, at ~2.5, 1.7, and 1.2 Ma, with all but one species disappearing by the end of the MPT. At both sites there are strong positive correlations between the accumulation rate of the Extinction Group and proxies indicating low-oxygen conditions with a high organic carbon input. In both sites, there was a pulsed decline in Extinction Group abundance and species richness, especially in glacial periods, with some partial recoveries in interglacials. We infer that the glacial declines at the deeper Site 758 were a result of increased production of colder, well-ventilated Antarctic Bottom Water (AABW), particularly in the late Pliocene and during the MPT. The Extinction Group at shallower water depths (Site 722) were not impacted by the deeper water mass changes until the onset of the MPT, when cold, well-ventilated Glacial North Atlantic Intermediate Water (GNAIW) production increased and may have spread into the Indian Ocean. Increased chemical ventilation at various water depths since late Pliocene, particularly in glacial periods, possibly in association with decreased or more fluctuating organic carbon flux, might be responsible for the pulsed global decline and extinction of this rather specialised group of benthic foraminifera.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From a 10.7 m long gravity core from the Sierra Leone Rise (5°39.5' N, 19°51' W) a detailed oxygen and carbon isotope record of both planktonic and benthonic foraminifera species was obtained extending from the Recent to Jaramillo event. The analysis yielded six major results. 1. Benthos oxygen isotopes varied by 1.8-2.2 per mil from interglacial to glacial times and may indicate a synglacial cooling of North Atlantic Deep Water at 2800 m depth by 1-3°C. 2. Variable anomalies between the benthos and plankton d18O record indicate a cooling of sea-surface temperatures (SST) by up to 6 °C during some glacial stages. 3. Southerly trade winds and equatorial upwelling may excert the primary control off SST variations, in particular of extremee values of cold and warm stages and of the abrupt character of climate transitions and their leads and lags, and finally, of variable sedimentation rates. 4. The benthos d13C record correlates well with the flux and preservation of organic matter. 5. A new time scale, CARPOR, was established from the assumption that terrigenous sediment supply was ± constant bit CaCO3 varied considerably. When applied to the d18O record, three major and numerous short-term variations of sedimentation rates (0.8 to 4.0 cm/kyr) can be distinguished. 6. The climatic record was modified by bioturbation much more strongly during cold than during warm stages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foraminifera shells from modern sediments document the hydrography of the coastal upwelling region off Northwest-Africa (12-35° N) through the stable isotopic composition of their shells. Oxygen isotopes in planktonic foraminifers reflect sea surface temperatures (SST) during the main growing season of the differnt species: Globigerinoides ruber (pink and white) and G. sacculifer delineate the temperatures of the summer, Globorotalia inflata and Pulleniatina obliquiloculata those of the winter. Oxygen isotopes on Globigerina bulloides document temperature ranges of the upwelling seasons. d18O values in planktonic foraminifera from plankton hauls resemble those from the surface sediment samples, if the time of the plankton collection is identical with that of the main growing season of the species. The combined isotopic record of G. ruber (white) and G. inflata clearly reveals the latitudinal variations of the annual mean SST. The deviation of the d18O values from both species from their common mean is a scale for the seasonality, i.e. the maximum temperature range within one year. Thus in the summer upwelling region (north of 25° N) seasonality is relatively low, while it becomes high in the winter upwelling region south of 20° N. Furthermore, the winter upwelling region is characterized by relatively high d18O values - indicating low temperatures - in G. bulloides, the region of summer upwelling by relatively low d180 values compared with the constructed annual mean SST. Generally, carbon isotopes from the plankton hauls coincide with those from sediment surface samples. The enrichment of 13C isotopes in foraminifers from areas with high primary production can be caused by the removal of 12C from the total dissolved inorganic carbon during phytoplankton blooms. It is found that carbon isotopes from plankton hauls off Northwest-Africa are relatively enriched in 13C compared with samples from the western Atlantic Ocean. Also shells of G. ruber (pink and white) from upwelling regions are enriched in the heavier isotope compared with regions without upwelling. In the sediment, the enrichement of 13C due to high primary production can only be seen in G. bulloides from the high fertile upwelling region south of 20° N. North of this latitude values are relatively low. An enrichment of 12C is observed in shells of G. ruber (pink), G. inflata and P. obliquiloculata from summer-winter- and perennial upwelling regions respectively. Northern water masses can be distinguished from their southern counterparts by relatively high oxygen and carbon values in the "living" (=stained) benthic foraminifera Uvigerina sp. and Hoeglundina elegans. A tongue of the Mediterranean Outflow water can be identified far to the south (20° N) by 13C-enriched shells of these benthic foraminifera. A zone of erosion (15-25° N, 300-600 m) with a subrecent sediment surface can be mapped with the help of oxygen isotopes in "dead" benthic specimens. Comparison of d18O values in aragonitic and calcitic benthic foraminifers does not show a differential influence of temperature on the isotopic composition in the carbonate. However, carbon isotopes reflect slightly differences under the influence of temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Downcore oxygen and carbon stable isotope records of planktonic and benthic foraminifers and fine-fraction carbonate from the southern high latitudes provide critical paleohydrographic constraints on the evolution of the Southern Ocean climate. In particular, the potential effects of an intensified Antarctic Circumpolar Current on the thermal isolation and cooling of the southern high latitudes, production of cold deep waters, and, ultimately, accumulation of continental ice on Antarctica in the middle Miocene are matters of interest. Using sediment materials from Ocean Drilling Program Leg 189 Sites 1170 and 1172 off Tasmania, Ennyu and Arthur (2004, doi:10.1029/151GM13) established the surface- and deepwater stable isotope records in the Southern Ocean across the middle Miocene event of the east Antarctic ice sheet expansion and discussed the paleoclimate proxy records in terms of the thermal evolution of the southern high latitudes and its effect on deepwater circulation. This report provides data tables and other supporting information relevant to discussions presented in Ennyu and Arthur (2004, doi:10.1029/151GM13). Items included in this report are (1) the oxygen and carbon stable isotope data measured on the Miocene bulk fine-fraction (i.e., <63 µm, primarily polyspecific nannofossil assemblage) carbonate and planktonic and benthic foraminifers from Holes 1170A and 1172A and (2) the Miocene depth-age models for the two sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New benthic foraminiferal stable isotopic records of northeast Pacific intermediate water (ODP Site 1014, 1177 m) and mid-depth water (ODP Site 1018, 2476 m) were compared to isotopic records of deep water in the tropical Pacific (ODP Site 849, 3851 m) for the reconstruction of vertical profiles of nutrient and physical properties from the Early Pliocene to the Early Pleistocene (approx. 5-1.4 Ma). Our data indicate that, for the entire interval, there was enhanced north Pacific intermediate water ventilation relative to today, and a similar to modern circulation pattern with northward flowing Pacific Bottom Water (PBW) beneath its southward flowing return flow. However, the core of maximally aged return flow resided as deep as ~2500 m (as compared to ~1500 m today), probably due to the strengthened intermediate water flow. Less apparent aging of deep water along its path before 2.7 Ma indicates that thermohaline overturning may have been more rapid in the warm period of the Early Pliocene. In addition, prior to 2.7 Ma, foraminiferal oxygen isotopic values at mid-depth sites are higher than at deep sites (a reversed vertical gradient relative to today) in both the Atlantic and Pacific Oceans. We suggest that NADW was warmer and more saline than today and that it influenced mid-depth waters throughout the Atlantic and Pacific Oceans. Enhanced Pliocene formation of warmer/saltier intermediate water in the north Pacific, and deep water in the north Atlantic, may have been a result of higher than modern high/mid-latitude sea surface temperatures, evaporation, and salinity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable isotopic measurements of G. sacculifer and C. wuellerstorfi in a core from the western equatorial Atlantic imply that there are parallel, suborbital oscillations in surface water hydrography and deep water circulation occurring during oxygen isotope stages 2 and 3. Low values of G. sacculifer delta18O accompany high values of C. wuellerstorfi delta13C, linking warmer sea surface temperatures (SSTs) in the tropics with increased production of lower North Atlantic Deep Water (NADW). The amplitude of the delta18O oscillations is 0.6 per mil (or 2°-3°C), which is superimposed on a glacial/interglacial amplitude of about 2.1per mil. Using the G. sacculifer delta18O data, we calculate that surface waters were colder during stage 2 than calculated by CLIMAP [1976, 1981]. The longer-period (>2 kyr) oscillations in air temperature recorded in the Greenland and Antarctic ice cores appear to correlate with oscillations in sea surface temperature in the equatorial Atlantic. The magnitude of these oscillations in tropical SST is too large to have resulted from changes in meridional heat transport caused by the global conveyor alone. The apparent synchroneity of equatorial SST and polar air temperature changes, as well as the amplitude of the SST changes at the equator, are consistent with the climate effects expected from changes in the atmosphere's greenhouse gas content (H2Ovapor, CO2, and CH4).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five delta13C records from the deep ocean, extending back to 1.3 Ma, were examined in order to constrain changes in mean ocean carbon isotope composition and thermohaline circulation over the 41- to 100-ka climate transition. These data show that significant perturbations in mean ocean carbon chemistry were associated with the mid-Pleistocene climate transition. Notable features of the last 1.3 Myr are (1) a pronounced ~0.3? decrease in mean ocean delta13C between 0.9 and 1.0 Myr, followed by a return to pre-1.0 Ma values by 400 ka B.P., which we propose was due to the onetime addition of isotopically depleted terrestrial carbon to the ocean, possibly associated with an increase in global aridity (and decrease in the size of the biosphere) across the 41- to 100-ka transition; (2) no change in the Atlantic-Pacific (A-P) delta13C gradient over the last 1.3 Myr, suggesting no change in mean ocean nutrient content accompanied the addition of light carbon; and (3) stronger vertical nutrient fractionation in the North Atlantic in the middle Pleistocene between sites 607 and 552, suggesting weaker North Atlantic Deep Water formation at this time relative to the early and late Pleistocene. We also find evidence for a more pronounced deep recirculation gyre in the western North Atlantic basin in the early Brunhes, as evidenced by "aging" of deep northern basin water (site 607) relative to deep water in the equatorial Atlantic (site 664).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to quantify changes in export production and carbonate dissolution over the past 1 Myr in the central equatorial Pacific Ocean we analyzed Ba, P, Al Ti, and Ca in 1106 samples from five piston cores gathered from 5°S to 4°N at 140°W. We focused on Ba/Ti, Al/Ti, and P/Ti ratios as export proxies and employed areally integrated time slice as well as time series strategies. Carbonate maxima from 0-560 kyr are characterized by 15-30% greater export than carbonate minima. The increases in export fall on glacial delta18O transitions rather than glacial maxima. From 560-800 kyr, overlapping with the mid-Pleistocene transition, there is a very large increase in total export yet no glacial-interglacial variability. The highest latitudes (5°S and 4°N) record minimal absolute export change from glacials to interglacials and yet record the most extreme minima in percent CaCO3, indicating that carbonate records there are dominated by dissolution, whereas near the equator they are more influenced by changes in export.