989 resultados para C-factor


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Exposure of eukaryotic cells to extracellular stimuli results in activation of mitogen-activated protein kinase (MAPK) cascades composed of MAPKs, MAPK kinases (MAP2Ks), and MAPK kinase kinases (MAP3Ks). Mammals possess a large number of MAP3Ks, many of which can activate the c-Jun N-terminal kinase (JNK) MAPK cascade when overexpressed, but whose biological function is poorly understood. We examined the function of the MAP3K MEK kinase 1 (MEKK1) in proinflammatory signaling. Using MEKK1-deficient embryonic stem cells prepared by gene targeting, we find that, in addition to its function in JNK activation by growth factors, MEKK1 is required for JNK activation by diverse proinflammatory stimuli, including tumor necrosis factor α, IL-1, double-stranded RNA, and lipopolysaccharide. MEKK1 is also essential for induction of embryonic stem cell migration by serum factors, but is not required for activation of other MAPKs or the IκB kinase signaling cascade.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Proliferating cell nuclear antigen (PCNA) is a processivity factor required for DNA polymerase δ (or ɛ)-catalyzed DNA synthesis. When loaded onto primed DNA templates by replication factor C (RFC), PCNA acts to tether the polymerase to DNA, resulting in processive DNA chain elongation. In this report, we describe the identification of two separate peptide regions of human PCNA spanning amino acids 36–55 and 196–215 that bind RFC by using the surface plasmon resonance technique. Site-directed mutagenesis of residues within these regions in human PCNA identified two specific sites that affected the biological activity of PCNA. Replacement of the aspartate 41 residue by an alanine, serine, or asparagine significantly impaired the ability of PCNA to (i) support the RFC/PCNA-dependent polymerase δ-catalyzed elongation of a singly primed DNA template; (ii) stimulate RFC-catalyzed DNA-dependent hydrolysis of ATP; (iii) be loaded onto DNA by RFC; and (iv) activate RFC-independent polymerase δ-catalyzed synthesis of poly dT. Introduction of an alanine at position 210 in place of an arginine also reduced the efficiency of PCNA in supporting RFC-dependent polymerase δ-catalyzed elongation of a singly primed DNA template. However, this mutation did not significantly alter the ability of PCNA to stimulate DNA polymerase δ in the absence of RFC but substantially lowered the efficiency of RFC-catalyzed reactions. These results are in keeping with a model in which surface exposed regions of PCNA interact with RFC and the subsequent loading of PCNA onto DNA orients the elongation complex in a manner essential for processive DNA synthesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The functional role of the interaction between c-Jun and simian virus 40 promoter factor 1 (Sp1) in epidermal growth factor (EGF)-induced expression of 12(S)-lipoxygenase gene in human epidermoid carcinoma A431 cells was studied. Coimmunoprecipitation experiments indicated that EGF stimulated interaction between c-Jun and Sp1 in a time-dependent manner. Overexpression of Ha-ras and c-Jun also enhanced the amount of c-Jun binding to Sp1. In addition, the c-Jun dominant negative mutant TAM-67 not only inhibited the coimmunoprecipitated c-Jun binding to Sp1 in a dose-dependent manner in cells overexpressing c-Jun but also reduced promoter activity of the 12(S)-lipoxygenase gene induced by c-Jun overexpression. Treatment of cells with EGF increased the interaction between the Sp1 oligonucleotide and nuclear c-Jun/Sp1 in a time-dependent manner. Furthermore, EGF activated the chimeric promoter consisting of 10 tandem GAL4-binding sites, which replaced the three Sp1-binding sites in the 12(S)lipoxygenase promoter only when coexpressed with GAL4-c-Jun () fusion proteins. These results indicate that the direct interaction between c-Jun and Sp1 induced by EGF cooperatively activated expression of the 12(S)-lipoxygenase gene, and that Sp1 may serve at least in part as a carrier bringing c-Jun to the promoter, thus transactivating the transcriptional activity of 12(S)-lipoxygenase gene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Jun N-terminal kinases (JNKs) recently have been shown to be required for thymocyte apoptosis and T cell differentiation and/or proliferation. To investigate the molecular targets of JNK signaling in lymphoid cells, we used mice in which the serines phosphorylated by JNK in c-Jun were replaced by homologous recombination with alanines (junAA mice). Lymphocytes from these mice showed no phosphorylation of c-Jun in response to activation stimuli, whereas c-Jun was rapidly phosphorylated in wild-type cells. Despite the fact that c-jun is essential for early development, junAA mice develop normally; however, c-Jun N-terminal phosphorylation was required for efficient T cell receptor-induced and tumor necrosis factor-α-induced thymocyte apoptosis. In contrast, c-Jun phosphorylation by JNK is not required for T cell proliferation or differentiation. Because jnk2−/− T cells display a proliferation defect, we concluded that JNK2 must have other substrates required for lymphocyte function. Surprisingly, jnk2−/− T cells showed reduced NF-AT DNA-binding activity after activation. Furthermore, overexpression of JNK2 in Jurkat T cells strongly enhanced NF-AT-dependent transcription. These results demonstrate that JNK signaling differentially uses c-Jun and NF-AT as molecular effectors during thymocyte apoptosis and T cell proliferation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transcription factors control eukaryotic polymerase II function by influencing the recruitment of multiprotein complexes to promoters and their subsequent integrated function. The complexity of the functional ‘transcriptosome’ has necessitated biochemical fractionation and subsequent protein sequencing on a grand scale to identify individual components. As a consequence, much is now known of the basal transcription complex. In contrast, less is known about the complexes formed at distal promoter elements. The c-fos SRE, for example, is known to bind Serum Response Factor (SRF) and ternary complex factors such as Elk-1. Their interaction with other factors at the SRE is implied but, to date, none have been identified. Here we describe the use of mass-spectrometric sequencing to identify six proteins, SRF, Elk-1 and four novel proteins, captured on SRE duplexes linked to magnetic beads. This approach is generally applicable to the characterisation of nucleic acid-bound protein complexes and the post-translational modification of their components.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Platelet-derived growth factor (PDGF) is a broadly expressed mitogenic and chemotactic factor with diverse roles in a number of physiologic and pathologic settings. The zinc finger transcription factors Sp1, Sp3 and Egr-1 bind to overlapping elements in the proximal PDGF B-chain promoter and activate transcription of this gene. The anthracycline nogalamycin has previously been reported to inhibit the capacity of Egr-1 to bind DNA in vitro. Here we used electrophoretic mobility shift assays to show that nogalamycin added to cells in culture did not alter the interaction of Egr-1 with the PDGF-B promoter. Instead, it enhanced the capacity of Sp1 to bind DNA. Nogalamycin increased PDGF-B mRNA expression at the level of transcription, which was abrogated by mutation of the Sp1 binding site in the PDGF-B promoter or overexpression of mutant Sp1. Rather than increasing total levels of Sp1, nogalamycin altered the phosphorylation state of the transcription factor. Overexpression of dominant-negative PKC-ζ blocked nogalamycin-inducible Sp1 phosphorylation and PDGF-B promoter-dependent expression. Nogalamycin stimulated the phosphorylation of PKC-ζ (on residue Thr410). These findings demonstrate for the first time that PKC-ζ and Sp1 phosphorylation mediate the inducible expression of this growth factor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The x-ray structure of a C-terminal fragment of the RAP74 subunit of human transcription factor (TF) IIF has been determined at 1.02-Å resolution. The α/β structure is strikingly similar to the globular domain of linker histone H5 and the DNA-binding domain of hepatocyte nuclear factor 3γ (HNF-3γ), making it a winged-helix protein. The surface electrostatic properties of this compact domain differ significantly from those of bona fide winged-helix transcription factors (HNF-3γ and RFX1) and from the winged-helix domains found within the RAP30 subunit of TFIIF and the β subunit of TFIIE. RAP74 has been shown to interact with the TFIIF-associated C-terminal domain phosphatase FCP1, and a putative phosphatase binding site has been identified within the RAP74 winged-helix domain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Sma and Mad related (Smad) family proteins are critical mediators of the transforming growth factor-β (TGF-β) superfamily signaling. After TGF-β-mediated phosphorylation and association with Smad4, Smad2 moves to the nucleus and activates expression of specific genes through cooperative interactions with DNA-binding proteins, including members of the winged-helix family of transcription factors, forkhead activin signal transducer (FAST)-1 and FAST2. TGF-β has also been described to activate other signaling pathways, such as the c-Jun N-terminal Kinase (JNK) pathway. Here, we show that activation of JNK cascade blocked the ability of Smad2 to mediate TGF-β-dependent activation of the FAST proteins. This inhibitory activity is mediated through the transcriptional factor c-Jun, which enhances the association of Smad2 with the nuclear transcriptional corepressor TG-interacting factor (TGIF), thereby interfering with the assembly of Smad2 and the coactivator p300 in response to TGF-β signaling. Interestingly, c-Jun directly binds to the nuclear transcriptional corepressor TGIF and is required for TGIF-mediated repression of Smad2 transcriptional activity. These studies thus reveal a mechanism for suppression of Smad2 signaling pathway by JNK cascade through transcriptional repression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using a mRNA differential screening of fibroblasts differing for the expression of c-fos we isolated a c-fos-induced growth factor (FIGF). The deduced protein sequence predicts that the cDNA codes for a new member of the platelet-derived growth factor/vascular endothelial growth factor (PDGF/VEGF) family. Northern blot analysis shows that FIGF expression is strongly reduced in c-fos-deficient cells. Transfection of exogenous c-fos driven by a constitutive promoter restores the FIGF expression in these cells. In contrast, both PDGF and VEGF expression is unaffected by c-fos. FIGF is a secreted dimeric protein able to stimulate mitogenic activity in fibroblasts. FIGF overexpression induces morphological alterations in fibroblasts. The cells acquire a spindle-shaped morphology, become more refractive, disorganized, and detach from the plate. These results imply that FIGF is a downstream growth and morphogenic effector of c-fos. These results also suggest that the expression of FIGF in response to c-fos activation induces specific differentiation patterns and its aberrant activation contributes to the malignant phenotype of tumors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A constitutively active form of fibroblast growth factor 2 (FGFR2) was identified in rat osteosarcoma (ROS) cells by an expression cloning strategy. Unlike other tyrosine kinase receptors activated by N-terminal truncation in tumors, this receptor, FGFR2-ROS, contains an altered C terminus generated from chromosomal rearrangement with a novel gene, designated FGFR activating gene 1 (FRAG1). While the removal of the C terminus slightly activates FGFR2, the presence of the FRAG1 sequence drastically stimulates the transforming activity and autophosphorylation of the receptor. FGFR2-ROS is expressed as a unusually large protein and is highly phosphorylated in NIH 3T3 transfectants. FRAG1 is ubiquitously expressed and encodes a predicted protein of 28 kDa lacking significant structural similarity to known proteins. Epitope-tagged FRAG1 protein showed a perinuclear localization by immunofluorescence staining. The highly activated state of FGFR2-ROS appears to be attributed to constitutive dimer formation and higher phosphorylation level as well as possibly altered subcellular localization. These results indicate a unique mechanism of receptor activation by a C terminus alteration through a chromosomal fusion with FRAG1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The inhibition of DNA synthesis prevents mitotic entry through the action of the S phase checkpoint. In the yeast Saccharomyces cerevisiae, an essential protein kinase, Spk1/Mec2/Rad53/Sad1, controls the coupling of S phase to mitosis. In an attempt to identify genes that genetically interact with Spk1, we have isolated a temperature-sensitive mutation, rfc5-1, that can be suppressed by overexpression of SPK1. The RFC5 gene encodes a small subunit of replication factor C complex. At the restrictive temperature, rfc5-1 mutant cells entered mitosis with unevenly separated or fragmented chromosomes, resulting in loss of viability. Thus, the rfc5 mutation defective for DNA replication is also impaired in the S phase checkpoint. Overexpression of POL30, which encodes the proliferating cell nuclear antigen, suppressed the replication defect of the rfc5 mutant but not its checkpoint defect. Taken together, these results suggested that replication factor C has a direct role in sensing the state of DNA replication and transmitting the signal to the checkpoint machinery.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Replication factor C (RFC, also called Activator I) is part of the processive eukaryotic DNA polymerase holoenzymes. The processive elongation of DNA chains requires that DNA polymerases are tethered to template DNA at primer ends. In eukaryotes the ring-shaped homotrimeric protein, proliferating cell nuclear antigen (PCNA), ensures tight template-polymerase interaction by encircling the DNA strand. Proliferating cell nuclear antigen is loaded onto DNA through the action of RFC in an ATP-dependent reaction. Human RFC is a protein complex consisting of five distinct subunits that migrate through SDS/polyacrylamide gels as protein bands of 140, 40, 38, 37, and 36 kDa. All five genes encoding the RFC subunits have been cloned and sequenced. A functionally identical RFC complex has been isolated from Saccharomyces cerevisiae and the deduced amino acid sequences among the corresponding human and yeast subunits are homologous. Here we report the expression of the five cloned human genes using an in vitro coupled transcription/translation system and show that the gene products form a complex resembling native RFC that is active in supporting an RFC-dependent replication reaction. Studies on the interactions between the five subunits suggest a cooperative mechanism in the assembly of the RFC complex. A three-subunit core complex, consisting of p36, p37, and p40, was identified and evidence is presented that p38 is essential for the interaction between this core complex and the large p140 subunit.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ob gene product, leptin, apparently exclusively expressed in adipose tissue, is a signaling factor regulating body weight homeostasis and energy balance. ob gene expression is increased in obese rodents and regulated by feeding, insulin, and glucocorticoids, which supports the concept that ob gene expression is under hormonal control, which is expected for a key factor controlling body weight homeostasis and energy balance. In humans, ob mRNA expression is increased in gross obesity; however, the effects of the above factors on human ob expression are unknown. We describe the structure of the human ob gene and initial functional analysis of its promoter. The human ob gene's three exons cover approximately 15 kb of genomic DNA. The entire coding region is contained in exons 2 and 3, which are separated by a 2-kb intron. The first small 30-bp untranslated exon is located >10.5 kb upstream of the initiator ATG codon. Three kilobases of DNA upstream of the transcription start site has been cloned and characterized. Only 217 bp of 5' sequence are required for basal adipose tissue-specific expression of the ob gene as well as enhanced expression by C/EBPalpha. Mutation of the single C/EBPalpha site in this region abolished inducibility of the promoter by C/EBPalpha in cotransfection assays. The gene structure will facilitate our analysis of ob mutations in human obesity, whereas knowledge of sequence elements and factors regulating ob gene expression should be of major importance in the prevention and treatment of obesity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The amyloid precursor protein (APP) is a molecule centrally involved in Alzheimer disease pathology, but whose normal function is still poorly understood. To investigate the consequences of increased intracellular production of various regions of APP on cellular physiology, we stably transfected PC12 cells with the C-terminal 100 amino acids of the human APP. In eight transfected clones that express the APP(C100) protein, exposure to nerve growth factor (NGF) did not promote differentiation. Transfectants continued to divide and failed to elaborate extensive neurites, whereas control PC12 cells, mock-transfected PC12 cells, and a nonexpressing transfected cell line did develop neurites and stopped dividing after NGF stimulation. Unlike NGF treatment, treatment with basic fibroblast growth factor profoundly accelerated neurite outgrowth in transfected cells. Also, a dramatic increase in a tyrosine phosphatase activity was noted. Expression and accumulation of APP C100 protein in PC12 cells results in an abnormal response to growth factor stimulation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Protein kinase C (PKC), a major cellular receptor for tumor-promoting phorbol esters and diacylglycerols (DGs), appears to be involved in a variety of cellular functions, although its activation mechanism in vivo is not yet fully understood. To evaluate the signaling pathways involved in the activation of PKC epsilon upon stimulation by platelet-derived growth factor (PDGF) receptor (PDGFR), we used a series of PDGFR "add-back" mutants. Activation of a PDGFR mutant (Y40/51) that binds and activates phosphatidylinositol 3-kinase (PI 3-kinase) caused translocation of PKC epsilon from the cytosol to the membrane in response to PDGF. A PDGFR mutant (Y1021) that binds and activates phospholipase C gamma (PLC gamma), but not PI 3-kinase, also caused the PDGF-dependent translocation of PKC epsilon. The translocation of PKC epsilon upon stimulation of PDGFR (Y40/51) was inhibited by wortmannin, an inhibitor of PI 3-kinase. Activation of PKC epsilon was further confirmed in terms of PKC epsilon-dependent expression of a phorbol 12-tetradecanoate 13-acetate response element (TRE)-luciferase reporter. Further, purified PKC epsilon was activated in vitro by either DG or synthetic phosphatidylinositol 3,4,5-trisphosphate. These results clearly demonstrate that PKC epsilon is activated through redundant and independent signaling pathways which most likely involve PLC gamma or PI 3-kinase in vivo and that PKC epsilon is one of the downstream mediators of PI 3-kinase whose downstream targets remain to be identified.