956 resultados para Business intelligence functionality
Resumo:
L’ultimo decennio ha visto un radicale cambiamento del mercato informatico, con la nascita di un numero sempre maggiore di applicazioni rivolte all’interazione tra utenti. In particolar modo, l’avvento dei social network ha incrementato notevolmente le possibilità di creare e condividere contenuti sul web, generando volumi di dati sempre maggiori, nell’ordine di petabyte e superiori. La gestione di tali quantità di dati ha portato alla nascita di soluzioni non relazionali appositamente progettate, dette NoSQL. Lo scopo di questo documento è quello di illustrare come i sistemi NoSQL, nello specifico caso di MongoDB, cerchino di sopperire alle difficoltà d’utilizzo dei database relazionali in un contesto largamente distribuito. Effettuata l'analisi delle principali funzionalità messe a disposizione da MongoDB, si illustreranno le caratteristiche di un prototipo di applicazione appositamente progettato che sfrutti una capacità peculiare di MongoDB quale la ricerca full-text. In ultima analisi si fornirà uno studio delle prestazioni di tale soluzione in un ambiente basato su cluster, evidenziandone il guadagno prestazionale.
Resumo:
Progetto di tesi svolto in azienda. Studio dei principali concetti di Business Intelligence (BI) e degli strumenti per la BI. Confronto tra i principali vendor nel mercato dell'analisi dei dati e della Business Intelligence. Studio e reigegnerizzazione di un modello per l'analisi economico finanziaria dei fornitori/clienti di un'azienda. Realizzazione di un prototipo del modello utilizzando un nuovo strumento per la reportistica: Tableau. Il prototipo si basa su dati economici finanziari estratti da banche dati online e forniti dall'azienda cliente. Implementazione finale del database e di un flusso automatico per la riclassificazione dei dati di bilancio.
Resumo:
Il primo capitolo prevede un’introduzione sul modello relazionale e sulle difficoltà che possono nascere nel tentativo di conformare le esigenze attuali di applicazioni ed utenti ai vincoli da esso imposti per lasciare poi spazio ad un’ampia descrizione del movimento NoSQL e delle tecnologie che ne fanno parte; il secondo capitolo sarà invece dedicato a MongoDB, alla presentazione delle sue caratteristiche e peculiarità, cercando di fornirne un quadro apprezzabile ed approfondito seppure non completo e del tutto esaustivo; infine nel terzo ed ultimo capitolo verrà approfondito il tema della ricerca di testo in MongoDB e verranno presentati e discussi i risultati ottenuti dai nostri test.
Resumo:
Il presente elaborato ha come oggetto la progettazione e lo sviluppo di una soluzione Elasticsearch come piattaforma di analisi in un contesto di Social Business Intelligence. L’elaborato si inserisce all’interno di un progetto del Business Intelligence Group dell’Università di Bologna, incentrato sul monitoraggio delle discussioni online sul tema politico nel periodo delle elezioni europee del 2014.
Resumo:
Il presente elaborato ha come oggetto l’analisi delle prestazioni e il porting di un sistema di SBI sulla distribuzione Hadoop di Cloudera. Nello specifico è stato fatto un porting dei dati del progetto WebPolEU. Successivamente si sono confrontate le prestazioni del query engine Impala con quelle di ElasticSearch che, diversamente da Oracle, sfrutta la stessa componente hardware (cluster).
Resumo:
The recent liberalization of the German energy market has forced the energy industry to develop and install new information systems to support agents on the energy trading floors in their analytical tasks. Besides classical approaches of building a data warehouse giving insight into the time series to understand market and pricing mechanisms, it is crucial to provide a variety of external data from the web. Weather information as well as political news or market rumors are relevant to give the appropriate interpretation to the variables of a volatile energy market. Starting from a multidimensional data model and a collection of buy and sell transactions a data warehouse is built that gives analytical support to the agents. Following the idea of web farming we harvest the web, match the external information sources after a filtering and evaluation process to the data warehouse objects, and present this qualified information on a user interface where market values are correlated with those external sources over the time axis.
Open business intelligence: on the importance of data quality awareness in user-friendly data mining
Resumo:
Citizens demand more and more data for making decisions in their daily life. Therefore, mechanisms that allow citizens to understand and analyze linked open data (LOD) in a user-friendly manner are highly required. To this aim, the concept of Open Business Intelligence (OpenBI) is introduced in this position paper. OpenBI facilitates non-expert users to (i) analyze and visualize LOD, thus generating actionable information by means of reporting, OLAP analysis, dashboards or data mining; and to (ii) share the new acquired information as LOD to be reused by anyone. One of the most challenging issues of OpenBI is related to data mining, since non-experts (as citizens) need guidance during preprocessing and application of mining algorithms due to the complexity of the mining process and the low quality of the data sources. This is even worst when dealing with LOD, not only because of the different kind of links among data, but also because of its high dimensionality. As a consequence, in this position paper we advocate that data mining for OpenBI requires data quality-aware mechanisms for guiding non-expert users in obtaining and sharing the most reliable knowledge from the available LOD.
Resumo:
Business Intelligence (BI) applications have been gradually ported to the Web in search of a global platform for the consumption and publication of data and services. On the Internet, apart from techniques for data/knowledge management, BI Web applications need interfaces with a high level of interoperability (similar to the traditional desktop interfaces) for the visualisation of data/knowledge. In some cases, this has been provided by Rich Internet Applications (RIA). The development of these BI RIAs is a process traditionally performed manually and, given the complexity of the final application, it is a process which might be prone to errors. The application of model-driven engineering techniques can reduce the cost of development and maintenance (in terms of time and resources) of these applications, as they demonstrated by other types of Web applications. In the light of these issues, the paper introduces the Sm4RIA-B methodology, i.e., a model-driven methodology for the development of RIA as BI Web applications. In order to overcome the limitations of RIA regarding knowledge management from the Web, this paper also presents a new RIA platform for BI, called RI@BI, which extends the functionalities of traditional RIAs by means of Semantic Web technologies and B2B techniques. Finally, we evaluate the whole approach on a case study—the development of a social network site for an enterprise project manager.
Resumo:
Context: Global Software Development (GSD) allows companies to take advantage of talent spread across the world. Most research has been focused on the development aspect. However, little if any attention has been paid to the management of GSD projects. Studies report a lack of adequate support for management’s decisions made during software development, further accentuated in GSD since information is scattered throughout multiple factories, stored in different formats and standards. Objective: This paper aims to improve GSD management by proposing a systematic method for adapting Business Intelligence techniques to software development environments. This would enhance the visibility of the development process and enable software managers to make informed decisions regarding how to proceed with GSD projects. Method: A combination of formal goal-modeling frameworks and data modeling techniques is used to elicitate the most relevant aspects to be measured by managers in GSD. The process is described in detail and applied to a real case study throughout the paper. A discussion regarding the generalisability of the method is presented afterwards. Results: The application of the approach generates an adapted BI framework tailored to software development according to the requirements posed by GSD managers. The resulting framework is capable of presenting previously inaccessible data through common and specific views and enabling data navigation according to the organization of software factories and projects in GSD. Conclusions: We can conclude that the proposed systematic approach allows us to successfully adapt Business Intelligence techniques to enhance GSD management beyond the information provided by traditional tools. The resulting framework is able to integrate and present the information in a single place, thereby enabling easy comparisons across multiple projects and factories and providing support for informed decisions in GSD management.
Resumo:
The purpose of this research is to propose a procurement system across other disciplines and retrieved information with relevant parties so as to have a better co-ordination between supply and demand sides. This paper demonstrates how to analyze the data with an agent-based procurement system (APS) to re-engineer and improve the existing procurement process. The intelligence agents take the responsibility of searching the potential suppliers, negotiation with the short-listed suppliers and evaluating the performance of suppliers based on the selection criteria with mathematical model. Manufacturing firms and trading companies spend more than half of their sales dollar in the purchase of raw material and components. Efficient data collection with high accuracy is one of the key success factors to generate quality procurement which is to purchasing right material at right quality from right suppliers. In general, the enterprises spend a significant amount of resources on data collection and storage, but too little on facilitating data analysis and sharing. To validate the feasibility of the approach, a case study on a manufacturing small and medium-sized enterprise (SME) has been conducted. APS supports the data and information analyzing technique to facilitate the decision making such that the agent can enhance the negotiation and suppler evaluation efficiency by saving time and cost.
Resumo:
Sustainable development support, balanced scorecard development and business process modeling are viewed from the position of systemology. Extensional, intentional and potential properties of a system are considered as necessary to satisfy functional requirements of a meta-system. The correspondence between extensional, intentional and potential properties of a system and sustainable, unsustainable, crisis and catastrophic states of a system is determined. The inaccessibility cause of the system mission is uncovered. The correspondence between extensional, intentional and potential properties of a system and balanced scorecard perspectives is showed. The IDEF0 function modeling method is checked against balanced scorecard perspectives. The correspondence between balanced scorecard perspectives and IDEF0 notations is considered.
Resumo:
With advances in science and technology, computing and business intelligence (BI) systems are steadily becoming more complex with an increasing variety of heterogeneous software and hardware components. They are thus becoming progressively more difficult to monitor, manage and maintain. Traditional approaches to system management have largely relied on domain experts through a knowledge acquisition process that translates domain knowledge into operating rules and policies. It is widely acknowledged as a cumbersome, labor intensive, and error prone process, besides being difficult to keep up with the rapidly changing environments. In addition, many traditional business systems deliver primarily pre-defined historic metrics for a long-term strategic or mid-term tactical analysis, and lack the necessary flexibility to support evolving metrics or data collection for real-time operational analysis. There is thus a pressing need for automatic and efficient approaches to monitor and manage complex computing and BI systems. To realize the goal of autonomic management and enable self-management capabilities, we propose to mine system historical log data generated by computing and BI systems, and automatically extract actionable patterns from this data. This dissertation focuses on the development of different data mining techniques to extract actionable patterns from various types of log data in computing and BI systems. Four key problems—Log data categorization and event summarization, Leading indicator identification , Pattern prioritization by exploring the link structures , and Tensor model for three-way log data are studied. Case studies and comprehensive experiments on real application scenarios and datasets are conducted to show the effectiveness of our proposed approaches.
Resumo:
“La Business Intelligence per il monitoraggio delle vendite: il caso Ducati Motor Holding”. L’obiettivo di questa tesi è quello di illustrare cos’è la Business Intelligence e di mostrare i cambiamenti verificatisi in Ducati Motor Holding, in seguito alla sua adozione, in termini di realizzazione di report e dashboard per il monitoraggio delle vendite. L’elaborato inizia con una panoramica generale sulla storia e gli utilizzi della Business Intelligence nella quale vengono toccati i principali fondamenti teorici: Data Warehouse, data mining, analisi what-if, rappresentazione multidimensionale dei dati, costruzione del team di BI eccetera. Si proseguirà mediante un focus sui Big Data convogliando l’attenzione sul loro utilizzo e utilità nel settore dell’automotive (inteso nella sua accezione più generica e cioè non solo come mercato delle auto, ma anche delle moto), portando in questo modo ad un naturale collegamento con la realtà Ducati. Si apre così una breve overview sull’azienda descrivendone la storia, la struttura commerciale attraverso la quale vengono gestite le vendite e la gamma dei prodotti. Dal quarto capitolo si entra nel vivo dell’argomento: la Business Intelligence in Ducati. Si inizia descrivendo le fasi che hanno fino ad ora caratterizzato il progetto di Business Analytics (il cui obiettivo è per l'appunto introdurre la BI i azienda) per poi concentrarsi, a livello prima teorico e poi pratico, sul reporting sales e cioè sulla reportistica basata sul monitoraggio delle vendite.
Resumo:
La importancia del proceso de toma de decisiones en la determinación del éxito de las compañías; genera la necesidad de contar con una fuente de información confiable que permita la generación de conocimiento oportuno y a disposición de quien lo necesita. El propósito de esta investigación es establecer un marco de referencia de la utilización de Business Intelligence como soporte de las decisiones tácticas, estratégicas y operacionales en las empresas. Iniciando con la descripción de la evolución de los sistemas de información utilizados en el proceso de toma de decisiones, impulsada por los diferentes cambios tecnológicos que han marcado el camino del establecimiento de Business Intelligence como una solución integral para los desafíos que se presentan a diario relacionados con la búsqueda de generación de valor mediante la implementación de decisiones óptimas. Luego se describe la arquitectura de un sistema de inteligencia de negocios en la cual se define elementos básicos para el correcto funcionamiento, como lo son: almacenamiento de datos, funciones empresariales, sistemas de gestión y las interfaces de usuario. Además de describir el proceso y alcance de su correcta implementación, y poder así obtener los beneficios que estos sistemas ofrecen. La metodología desarrollada en la investigación fue descriptiva, y se fundamentó en identificar el grado de utilización de Business Intelligence por los tomadores de decisiones, representados por egresados y graduados de la Maestría en Administración Financiera de la Universidad de El Salvador en el período 2006-2015.
Resumo:
I Big Data stanno guidando una rivoluzione globale. In tutti i settori, pubblici o privati, e le industrie quali Vendita al dettaglio, Sanità, Media e Trasporti, i Big Data stanno influenzando la vita di miliardi di persone. L’impatto dei Big Data è sostanziale, ma così discreto da passare inosservato alla maggior parte delle persone. Le applicazioni di Business Intelligence e Advanced Analytics vogliono studiare e trarre informazioni dai Big Data. Si studia il passaggio dalla prima alla seconda, mettendo in evidenza aspetti simili e differenze.