973 resultados para Bulk Metallic-Glass
Resumo:
Shear banding characterization of Zr64.13Cu15.75Ni10.12Al10 and Zr65Cu15Ni10Al10 bulk metallic glasses (BMGs) with significant difference in inherent plasticity and quite similar chemical composition was studied by depth sensitive macroindentaion tests with conical indenter. Well-developed shear band pattern can be found for both BMGs after indentation. Distinct difference in the shear band spacing, scale of plastic deformation region and the shear band branching in the two BMGs account for the different plasticity.
Resumo:
Shear banding characterization of Zr64.13Cu15.75Ni10.12Al10 and Zr65Cu15Ni10Al10 bulk metallic glasses (BMGs) with significant difference in inherent plasticity and quite similar chemical composition was studied by depth sensitive macroindentaion tests with conical indenter. Well-developed shear band pattern can be found for both BMGs after indentation. Distinct difference in the shear band spacing, scale of plastic deformation region and the shear band branching in the two BMGs account for the different plasticity.
Resumo:
Spherical nano-indentations of Cu46Zr54 bulk metallic glass (BMG) model systems were performed using molecular dynamics (MD) computer simulations, focusing specifically on the physical origin of serrated plastic flow. The results demonstrate that there is a direct correlation between macroscopic flow serration and underlying irreversible rearrangement of atoms, which is strongly dependent on the loading (strain) rate and the temperature. The serrated plastic flow is, therefore, determined by the magnitude of such irreversible rearrangement that is inhomogeneous temporally. A dimensionless Deborah number is introduced to characterize the effects of strain rate and temperature on serrations. Our simulations are shown to compare favorably with the available experimental observations.
Resumo:
Metallic glasses have typically been treated as a “one size fits all” type of material. Every alloy is considered to have high strength, high hardness, large elastic limits, corrosion resistance, etc. However, similar to traditional crystalline materials, properties are strongly dependent upon the constituent elements, how it was processed, and the conditions under which it will be used. An important distinction which can be made is between metallic glasses and their composites. Charpy impact toughness measurements are performed to determine the effect processing and microstructure have on bulk metallic glass matrix composites (BMGMCs). Samples are suction cast, machined from commercial plates, and semi-solidly forged (SSF). The SSF specimens have been found to have the highest impact toughness due to the coarsening of the dendrites, which occurs during the semi-solid processing stages. Ductile to brittle transition (DTBT) temperatures are measured for a BMGMC. While at room temperature the BMGMC is highly toughened compared to a fully glassy alloy, it undergoes a DTBT by 250 K. At this point, its impact toughness mirrors that of the constituent glassy matrix. In the following chapter, BMGMCs are shown to have the capability of being capacitively welded to form single, monolithic structures. Shear measurements are performed across welded samples, and, at sufficient weld energies, are found to retain the strength of the parent alloy. Cross-sections are inspected via SEM and no visible crystallization of the matrix occurs.
Next, metallic glasses and BMGMCs are formed into sheets and eggbox structures are tested in hypervelocity impacts. Metallic glasses are ideal candidates for protection against micrometeorite orbital debris due to their high hardness and relatively low density. A flat single layer, flat BMG is compared to a BMGMC eggbox and the latter creates a more diffuse projectile cloud after penetration. A three tiered eggbox structure is also tested by firing a 3.17 mm aluminum sphere at 2.7 km/s at it. The projectile penetrates the first two layers, but is successfully contained by the third.
A large series of metallic glass alloys are created and their wear loss is measured in a pin on disk test. Wear is found to vary dramatically among different metallic glasses, with some considerably outperforming the current state-of-the-art crystalline material (most notably Cu₄₃Zr₄₃Al₇Be₇). Others, on the other hand, suffered extensive wear loss. Commercially available Vitreloy 1 lost nearly three times as much mass in wear as alloy prepared in a laboratory setting. No conclusive correlations can be found between any set of mechanical properties (hardness, density, elastic, bulk, or shear modulus, Poisson’s ratio, frictional force, and run in time) and wear loss. Heat treatments are performed on Vitreloy 1 and Cu₄₃Zr₄₃Al₇Be₇. Anneals near the glass transition temperature are found to increase hardness slightly, but decrease wear loss significantly. Crystallization of both alloys leads to dramatic increases in wear resistance. Finally, wear tests under vacuum are performed on the two alloys above. Vitreloy 1 experiences a dramatic decrease in wear loss, while Cu₄₃Zr₄₃Al₇Be₇ has a moderate increase. Meanwhile, gears are fabricated through three techniques: electrical discharge machining of 1 cm by 3 mm cylinders, semisolid forging, and copper mold suction casting. Initial testing finds the pin on disk test to be an accurate predictor of wear performance in gears.
The final chapter explores an exciting technique in the field of additive manufacturing. Laser engineered net shaping (LENS) is a method whereby small amounts of metallic powders are melted by a laser such that shapes and designs can be built layer by layer into a final part. The technique is extended to mixing different powders during melting, so that compositional gradients can be created across a manufactured part. Two compositional gradients are fabricated and characterized. Ti 6Al¬ 4V to pure vanadium was chosen for its combination of high strength and light weight on one end, and high melting point on the other. It was inspected by cross-sectional x-ray diffraction, and only the anticipated phases were present. 304L stainless steel to Invar 36 was created in both pillar and as a radial gradient. It combines strength and weldability along with a zero coefficient of thermal expansion material. Only the austenite phase is found to be present via x-ray diffraction. Coefficient of thermal expansion is measured for four compositions, and it is found to be tunable depending on composition.
Resumo:
Bulk metallic glasses (BMGs) maybe be considered to share some of the same inherent trade-offs as engineering ceramics. While BMGs typically exhibit high yield strengths, and while some have surprising fracture toughness, they exhibiting little to no tensile ductility, and fail in a brittle manner under uniaxial loading. Speaking broadly, there are two complimentary approaches to improving on these shortcomings: 1) create bulk metallic glass matrix composites (BMGMCs) and 2) improve the properties of a monolithic BMG. The structure of this thesis mirrors this division, with chapters 2-7 focusing on creating and processing amorphous metal matrix composites, and chapter 8 focusing on modifying the properties of a monolithic BGM by altering its configurational state through irradiation.
Resumo:
Three-point bending experiments were performed on as-cast and annealed samples of Zr52.5Cu17.9Ni14.6Al10Ti5 (Vit105) bulk metallic glasses over a wide range of temperatures varying from room temperature (293 K) to liquid nitrogen temperature (77 K). The results demonstrated that the free volume decrease due to annealing and/or cryogenic temperature can reduce the propensity for the formation of multiple shear bands and hence deteriorate plastic deformation ability. We clearly observed a sharp ductile-to-brittle transition (DBT), across which microscopic fracture feature transfers from micro-scale vein patterns to nano-scale periodic corrugations. Macroscopically, the corresponding fracture mode changes from ductile shear fracture to brittle tensile fracture. The shear transformation zone volume, taking into account free volume, temperature and strain rate, is proposed to quantitatively characterize the DBT behavior in fracture of metallic glasses.
Resumo:
In this article, we review our recent advances in understanding the deformation behavior of a typical tough Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit 1) bulk metallic glass (BMG), as a model material, under various loading modes and strain rates, focusing particularly on the rate-dependence and formation mechanism of shear-banding. Dynamic and quasi-static mechanical experiments, including plate shear, shear punch and spherical indentation, and continuum as well as atomistic modeling on shear-banding are discussed. The results demonstrate that higher strain rate slows down the annihilation process of free volume, but promotes the free-volume coalescence, which is responsible for the rate-dependent shear banding. The physical origin of shear bands, that is the free volume softening underpinned by irreversible rearrangements of atoms, is unveiled. Finally, some concluding remarks are given.
Resumo:
Dynamic planar compressive experiments on a typical tough Zr-BMG (Bulk Metallic Glass) were carried out under impact velocity of 500-600 m/sec and strain rate of 10(6)/s. The fracture surface of samples exhibits different fracture patterns at different parts of the sample. At a corner close to the front loading boundary, fracture patterns from the free edge toward the centre changed from equiaxial veins in microscale to periodic corrugations in nanoscale; in the middle of the sample, the fracture surface contains glazed zones laid out orderly along the same boundary. FEM simulation was performed to investigate the stress distributions in the impacted sample under a short duration impact loading. It has revealed that the fracture patterns changing from the free edge toward the centre were resulted from the fracture modes' changing from the tensile dominant fracture to the shear dominant fracture. Whereas at the middle part of the sample, fracture initiated from several parallel shear bands propagating close to the same boundary is due to a large strain or much higher shear stress in this area.
Resumo:
The effects of over-doped yttrium on the microstructure, mechanical properties and thermal behaviour of an oxygen-contaminated Zr51Cu20.7Ni12Al16.3 bulk metallic glass are studied systematically. It has been found that, when yttrium doping is beyond the optimum doping, the glass-forming ability enhancement effect induced by yttrium addition decreases and the mechanical properties are adversely affected. In this study, a new phase with an orthorhombic structure (a = 0.69 nm, b = 0.75 nm and c = 0.74 nm) is identified in the yttrium over-doped alloys. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Glass transition and crystallization process of bulk Nd60Al10Fe20Co10 metallic glass were investigated by means of dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electronic microscopy (SEM). It is shown that the glass transition and onset crystallization temperature determined by DMTA at a heating rate of 0.167 K/s are 480 and 588 K respectively. The crystallization process of the metallic glass is concluded as follows: amorphous alpha-->alpha' + metastable FeNdAl novel phase -->alpha' + primary delta phase-->primary delta phase + eutectic delta phase Nd3Al phase + Nd3Co phase. The appearance of hard magnetism in this alloy is ascribed to the presence of amorphous phase with highly relaxed structure. The hard magnetism disappeared after the eutectic crystallization of amorphous phase.
Resumo:
Glass transition and thermal stability of bulk Nd60Al10Fe20Co10 metallic glass were investigated by means of dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The glass transition temperature, not revealed by DSC, is alternatively determined by DMTA via storage modulus E' and loss modulus E" measurement to be 498 K at a heating rate of 0.167 K s (-1). The calculated reduced glass transition temperature (T-g/T-m) is 0.63. The large value of T-g/T-m of this alloy is consistent with its good glass-forming ability. The crystallization process of the metallic glass is concluded as follows: amorphous --> amorphous + metastable FeNdAl phase --> amorphous + primary delta-FeNdAl phase --> primary delta-phase + eutectic delta-phase + Nd3Al + Nd3Co. The appearance of hard magnetism in this alloy is ascribed to the presence of amorphous phase with highly relaxed structure. The hard magnetism disappeared after the eutectic crystallization of the amorphous phase. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Recent experiments have shown that nano-sized metallic glass (MG) specimens subjected to tensile loading exhibit increased ductility and work hardening. Failure occurs by necking as opposed to shear banding which is seen in bulk samples. Also, the necking is generally observed at shallow notches present on the specimen surface. In this work, continuum finite element analysis of tensile loading of nano-sized notched MG specimens is conducted using a thermodynamically consistent non-local plasticity model to clearly understand the deformation behavior from a mechanics perspective. It is found that plastic zone size in front of the notch attains a saturation level at the stage when a dominant shear band forms extending across the specimen. This size scales with an intrinsic material length associated with the interaction stress between flow defects. A transition in deformation behavior from quasi-brittle to ductile becomes possible when this critical plastic zone size is larger than the uncracked ligament length. These observations corroborate with atomistic simulations and experimental results. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Bulk metallic glasses of Nd65Al10Fe25-xCox (x=0,5,10) have been prepared in the form of 3 mm diam rods. Results of differential scanning calrimetry, dynamic mechanical thermal analysis (DMTA), and x-ray diffraction are presented for these alloys. It is shown that the glass transition and crystallization have been observed by DMTA. The reduced glass transition temperature of these glasses, defined as the ratio between the glass transition temperature T-g and the melting temperature T-l is in the range from 0.55 to 0.62. All these glasses have a large supercooled liquid region (SLR), ranging from 80 to 130 K. The high value of reduced glass transition temperature and wide SLR agree with their good glass formation ability.
Resumo:
Viscoelastic deformation and creep behavior of La- and Ce-based bulk metallic glasses (BMGs) with low glass transition temperature are investigated through nanoindentation at room temperature. Creep compliance and retardation spectra are derived to study the creep mechanism. The time-dependent displacement can be well described by a generalized Kelvin model. A modification is proposed to determine the elastic modulus from the generalized Kelvin model. The results are in excellent agreement with the elastic modulus determined by uniaxial compression tests. (c) 2007 Published by Elsevier B.V.