947 resultados para Buchanan, William Tharp, 1799-1825.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Two columns to the page.
Resumo:
Mode of access: Internet.
Resumo:
Includes indexes.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Reply to Louis Hue Girardin's "Pulaski vindicated from an unsupported charge inconsiderately or malignantly introduced in Judge Johnson's Sketches of the life and correspondence of Major Gen. Nathaniel Greene."
Resumo:
Mode of access: Internet.
Resumo:
SQL Injection Attack (SQLIA) remains a technique used by a computer network intruder to pilfer an organisation’s confidential data. This is done by an intruder re-crafting web form’s input and query strings used in web requests with malicious intent to compromise the security of an organisation’s confidential data stored at the back-end database. The database is the most valuable data source, and thus, intruders are unrelenting in constantly evolving new techniques to bypass the signature’s solutions currently provided in Web Application Firewalls (WAF) to mitigate SQLIA. There is therefore a need for an automated scalable methodology in the pre-processing of SQLIA features fit for a supervised learning model. However, obtaining a ready-made scalable dataset that is feature engineered with numerical attributes dataset items to train Artificial Neural Network (ANN) and Machine Leaning (ML) models is a known issue in applying artificial intelligence to effectively address ever evolving novel SQLIA signatures. This proposed approach applies numerical attributes encoding ontology to encode features (both legitimate web requests and SQLIA) to numerical data items as to extract scalable dataset for input to a supervised learning model in moving towards a ML SQLIA detection and prevention model. In numerical attributes encoding of features, the proposed model explores a hybrid of static and dynamic pattern matching by implementing a Non-Deterministic Finite Automaton (NFA). This combined with proxy and SQL parser Application Programming Interface (API) to intercept and parse web requests in transition to the back-end database. In developing a solution to address SQLIA, this model allows processed web requests at the proxy deemed to contain injected query string to be excluded from reaching the target back-end database. This paper is intended for evaluating the performance metrics of a dataset obtained by numerical encoding of features ontology in Microsoft Azure Machine Learning (MAML) studio using Two-Class Support Vector Machines (TCSVM) binary classifier. This methodology then forms the subject of the empirical evaluation.
Resumo:
Imagine being told that your wage was going to be cut in half. Well, that’s what’s soon going to happen to those who make money from Bitcoin mining, the process of earning the online currency Bitcoin. The current expected date for this change is 11 July 2016. Many see this as the day when Bitcoin prices will rocket and when Bitcoin owners could make a great deal of money. Others see it as the start of a Bitcoin crash. At present no one quite knows which way it will go. Bitcoin was created in 2009 by someone known as Satoshi Nakamoto, borrowing from a whole lot of research methods. It is a cryptocurrency, meaning it uses digital encryption techniques to create bitcoins and secure financial transactions. It doesn’t need a central government or organisation to regulate it, nor a broker to manage payments. Conventional currencies usually have a central bank that creates money and controls its supply. Bitcoin is instead created when individuals “mine” for it by using their computers to perform complex calculations through special software. The algorithm behind Bitcoin is designed to limit the number of bitcoins that can ever be created. All Bitcoin transactions are recorded on a public database known as a blockchain. Every time someone mines for Bitcoin, it is recorded with a new block that is transmitted to every Bitcoin app across the network, like a bank updating its online records.
Resumo:
Recent years have seen an astronomical rise in SQL Injection Attacks (SQLIAs) used to compromise the confidentiality, authentication and integrity of organisations’ databases. Intruders becoming smarter in obfuscating web requests to evade detection combined with increasing volumes of web traffic from the Internet of Things (IoT), cloud-hosted and on-premise business applications have made it evident that the existing approaches of mostly static signature lack the ability to cope with novel signatures. A SQLIA detection and prevention solution can be achieved through exploring an alternative bio-inspired supervised learning approach that uses input of labelled dataset of numerical attributes in classifying true positives and negatives. We present in this paper a Numerical Encoding to Tame SQLIA (NETSQLIA) that implements a proof of concept for scalable numerical encoding of features to a dataset attributes with labelled class obtained from deep web traffic analysis. In the numerical attributes encoding: the model leverages proxy in the interception and decryption of web traffic. The intercepted web requests are then assembled for front-end SQL parsing and pattern matching by applying traditional Non-Deterministic Finite Automaton (NFA). This paper is intended for a technique of numerical attributes extraction of any size primed as an input dataset to an Artificial Neural Network (ANN) and statistical Machine Learning (ML) algorithms implemented using Two-Class Averaged Perceptron (TCAP) and Two-Class Logistic Regression (TCLR) respectively. This methodology then forms the subject of the empirical evaluation of the suitability of this model in the accurate classification of both legitimate web requests and SQLIA payloads.
Resumo:
Indenture (vellum) between William Kingsmill, Sheriff of Niagara regarding the sale of goods and chattels of Darius Ball including buildings and improvements in Lot no. 4 near Grand River to Peter Buchanan, Isaac Buchanan, Robert W. Harris and I. Young, July 22, 1844.
Resumo:
« Pour respecter les droits d'auteur, la version électronique de ce mémoire a été dépouillée de certains documents visuels et audio-visuels. La version intégrale du mémoire a été déposée au Service de la gestion des documents et des archives de l'Université de Montréal ».