977 resultados para Bridge whist.
Resumo:
The objective of this work, Pilot Project - Demonstration of Capabilities and Benefits of Bridge Load Rating through Physical Testing, was to demonstrate the capabilities for load testing and rating bridges in Iowa, study the economic benefit of performing such testing, and perform outreach to local, state, and national engineers on the topic of bridge load testing and rating. This report documents one of three bridges inspected, load tested, and load rated as part of the project, the Johnson County Bridge (FHWA #205750), including testing procedures and performance of the bridge under static loading along with the calculated load rating from the field-calibrated analytical model. Two parallel reports document the testing and load rating of the Sioux County Bridge (FHWA #308730) and the Ida County Bridge (FHWA #186070). A tech brief provides overall information about the project.
Resumo:
"Technical challenges exist with infrastructure that can be addressed by nondestructive evaluation (NDE) methods, such as detecting corrosion damage to reinforcing steel that anchor concrete bridge railings to bridge road decks. Moisture and chloride ions reach the anchors along the cold joint between the rails and deck, causing corrosion that weakens the anchors and ultimately the barriers. The Center for Nondestructive Evaluation at Iowa State University has experience in development of measurement techniques and new sensors using a variety of interrogating energies. This research evaluated feasibility of three technologies — x-ray radiation, ground-penetrating radar (GPR), and magnetic flux leakage (MFL) — for detection and quantification of corrosion of embedded reinforcing steel. Controlled samples containing pristine reinforcing steel with and without epoxy and reinforcing steel with 25 percent and 50 percent section reduction were embedded in concrete at 2.5 in. deep for laboratory evaluation. Two of the techniques, GPR and MFL, were used in a limited field test on the Iowa Highway 210 Bridge over Interstate 35 in Story County. The methods provide useful and complementary information. GPR provides a rapid approach to identify reinforcing steel that has anomalous responses. MFL provides similar detection responses but could be optimized to provide more quantitative correlation to actual condition. Full implementation could use either GPR or MFL methods to identify areas of concern, followed by radiography to give a visual image of the actual condition, providing the final guidance for maintenance actions." The full 103 page report and the 2 page Tech Transfer Summary are included in this link.
Resumo:
Epoxy coatings have been used on the embedded reinforcing bars of bridge decks since the mid-1970s to mitigate deterioration caused by chloride-induced corrosion. The use of chloride-based deicers became common in the early 1960s and caused corrosion of conventional uncoated bars in bridge decks within 5 to 10 years of commencement of deicer applications. In response to this rapid deterioration, the National Bureau of Standards researched coatings to protect the reinforcement (National Bureau of Standards, 1975), resulting in the development of epoxy-coated reinforcing bars, which were used in bridge decks beginning in 1973. While corrosion-related deterioration has been prevalent on bridge decks with uncoated reinforcing bars in northern climates where the use of deicing salts is common, bridge decks constructed after 1973 with epoxy-coated reinforcing have shown good corrosion resistance with only limited exceptions. On the whole, previous laboratory and field studies regarding the performance of epoxy-coated reinforcing bars are very promising; however, some laboratory and field studies have yielded differing results. In recent years, maintenance personnel for the Iowa Department of Transportation (Iowa DOT) have reportedly performed patch repairs to some bridge decks reinforced with epoxy-coated bars. At one such bridge, the southbound US 65 bridge (Bridge No. 7788.5L065) over the Union Pacific Railroad near Bondurant in Polk County, Iowa, deck repairs were performed by Iowa DOT maintenance personnel in the Spring of 2010, based on our communications regarding this topic with Mr. Gordon Port of the Iowa DOT. These repairs were observed by engineers from the Iowa DOT Office of Bridges and Structures, who reported that significant corrosion was found at a number of epoxy-coated reinforcing bars uncovered during this patch work. These repairs were reportedly performed at spalls and delaminated areas corresponding to cracks over transverse reinforcing bars, and involved careful removal of the concrete from over the bars. Figures 1 through 4 contain photographs provided by Iowa DOT personnel showing the removal process (Figure 1), the conditions encountered (Figures 2 and 3), and close-up views of the corroded reinforcing (Figure 4). As a result of these observations, the Iowa Department of Transportation has requested this study to gain further understanding of the long-term performance of bridge decks reinforced with epoxy-coated bars. The two main objectives of this study are to determine the long-term effectiveness of the epoxy coatings and to determine the potential causes for the deterioration at locations where corrosion has occurred. Wiss, Janney, Elstner Associates, Inc. (WJE) and the Iowa DOT identified eight different bridge decks across Iowa for this study that were constructed using epoxy-coated reinforcing bars. A field investigation consisting of visual inspections, a delamination survey, a concrete cover survey, electrical testing for susceptibility to corrosion, and concrete sampling was conducted within a survey area deemed to be representative of the condition of each bridge deck. Laboratory testing, including chloride ion content testing, characterization of the extracted bars, petrographic examination of the concrete, and carbonation testing, was conducted on the core samples taken from each bridge deck.
Resumo:
Weathering steel is commonly used as a cost-effective alternative for bridge superstructures, as the costs and environmental impacts associated with the maintenance/replacement of paint coatings are theoretically eliminated. The performance of weathering steel depends on the proper formation of a surface patina, which consists of a dense layer of corrosion product used to protect the steel from further atmospheric corrosion. The development of the weathering steel patina may be hindered by environmental factors such as humid environments, wetting/drying cycles, sheltering, exposure to de-icing chlorides, and design details that permit water to pond on steel surfaces. Weathering steel bridges constructed over or adjacent to other roadways could be subjected to sufficient salt spray that would impede the development of an adequate patina. Addressing areas of corrosion on a weathering steel bridge superstructure where a protective patina has not formed is often costly and negates the anticipated cost savings for this type of steel superstructure. Early detection of weathering steel corrosion is important to extending the service life of the bridge structure; however, written inspection procedures are not available for inspectors to evaluate the performance or quality of the patina. This project focused on the evaluation of weathering steel bridge structures, including possible methods to assess the quality of the weathering steel patina and to properly maintain the quality of the patina. The objectives of this project are summarized as follows: Identify weathering steel bridge structures that would be most vulnerable to chloride contamination, based on location, exposure, environment, and other factors. Identify locations on an individual weathering steel bridge structure that would be most susceptible to chloride contamination, such as below joints, splash/spray zones, and areas of ponding water or debris. Identify possible testing methods and/or inspection techniques for inspectors to evaluate the quality of the weathering steel patina at locations discussed above. Identify possible methods to measure and evaluate the level of chloride contamination at the locations discussed above. Evaluate the effectiveness of water washing on removing chlorides from the weathering steel patina. Develop a general prioritization for the washing of bridge structures based on the structure’s location, environment, inspection observations, patina evaluation findings, and chloride test results.
Resumo:
The US Highway 6 Bridge over Keg Creek outside of Council Bluffs, Iowa is a demonstration bridge site chosen to put into practice newly-developed Accelerated Bridge Construction (ABC) concepts. One of these new concepts is the use of prefabricated high performance concrete (HPC) bridge elements that are connected, in place, utilizing advanced material closure-pours and quick-to-install connection details. The Keg Creek Bridge is the first bridge in the US to utilize moment-resisting ultra-high performance concrete (UHPC) joints in negative moment regions over piers. Through laboratory and live load field testing, performance of these transverse joints as well as global bridge behavior is quantified and examined. The effectiveness of the structural performance of the bridge is evaluated to provide guidance for future designs of similar bridges throughout the US.
Resumo:
High-performance concrete (HPC) overlays have been used increasingly as an effective and economical method for bridge decks in Iowa and other states. However, due to its high cementitious material content, HPC often displays high shrinkage cracking potential. This study investigated the shrinkage behavior and cracking potential of the HPC overlay mixes commonly used in Iowa. In the study, 11 HPC overlay mixes were studied. These mixes consisted of three types of cements (Type I, I/II, and IP) and various supplementary cementitious materials (Class C fly ash, slag and metakaolin). Limestone with two different gradations was used as coarse aggregates in 10 mixes and quartzite was used in one mix. Chemical shrinkage of pastes, free drying shrinkage, autogenous shrinkage of mortar and concrete, and restrained ring shrinkage of concrete were monitored over time. Mechanical properties (such as elastic modulus and compressive and splitting tensile strength) of these concrete mixes were measured at different ages. Creep coefficients of these concrete mixes were estimated using the RILEM B3 and NCHRP Report 496 models. Cracking potential of the concrete mixes was assessed based on both ASTM C 1581 and simple stress-to-strength ratio methods. The results indicate that among the 11 mixes studied, three mixes (4, 5, and 6) cracked at the age of 15, 11, and 17 days, respectively. Autogenous shrinkage of the HPC mixes ranges from 150 to 250 microstrain and free dying shrinkage of the concrete ranges from 700 to 1,200 microstrain at 56 days. Different concrete materials (cementitious type and admixtures) and mix proportions (cementitious material content) affect concrete shrinkage in different ways. Not all mixes having a high shrinkage value cracked first. The stresses in the concrete are associated primarily with the concrete shrinkage, elastic modulus, tensile strength, and creep. However, a good relationship is found between cementitious material content and total (autogenous and free drying) shrinkage of concrete.
Resumo:
This work is divided into three volumes: Volume I: Strain-Based Damage Detection; Volume II: Acceleration-Based Damage Detection; Volume III: Wireless Bridge Monitoring Hardware. Volume I: In this work, a previously-developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The statistical damage-detection tool, control-chart-based damage-detection methodologies, were further investigated and advanced. For the validation of the damage-detection approaches, strain data were obtained from a sacrificial specimen attached to the previously-utilized US 30 Bridge over the South Skunk River (in Ames, Iowa), which had simulated damage,. To provide for an enhanced ability to detect changes in the behavior of the structural system, various control chart rules were evaluated. False indications and true indications were studied to compare the damage detection ability in regard to each methodology and each control chart rule. An autonomous software program called Bridge Engineering Center Assessment Software (BECAS) was developed to control all aspects of the damage detection processes. BECAS requires no user intervention after initial configuration and training. Volume II: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The objective of this part of the project was to validate/integrate a vibration-based damage-detection algorithm with the strain-based methodology formulated by the Iowa State University Bridge Engineering Center. This report volume (Volume II) presents the use of vibration-based damage-detection approaches as local methods to quantify damage at critical areas in structures. Acceleration data were collected and analyzed to evaluate the relationships between sensors and with changes in environmental conditions. A sacrificial specimen was investigated to verify the damage-detection capabilities and this volume presents a transmissibility concept and damage-detection algorithm that show potential to sense local changes in the dynamic stiffness between points across a joint of a real structure. The validation and integration of the vibration-based and strain-based damage-detection methodologies will add significant value to Iowa’s current and future bridge maintenance, planning, and management Volume III: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. This report volume (Volume III) summarizes the energy harvesting techniques and prototype development for a bridge monitoring system that uses wireless sensors. The wireless sensor nodes are used to collect strain measurements at critical locations on a bridge. The bridge monitoring hardware system consists of a base station and multiple self-powered wireless sensor nodes. The base station is responsible for the synchronization of data sampling on all nodes and data aggregation. Each wireless sensor node include a sensing element, a processing and wireless communication module, and an energy harvesting module. The hardware prototype for a wireless bridge monitoring system was developed and tested on the US 30 Bridge over the South Skunk River in Ames, Iowa. The functions and performance of the developed system, including strain data, energy harvesting capacity, and wireless transmission quality, were studied and are covered in this volume.
Resumo:
Approach slab pavement at integral abutment (I-A) bridges are prone to settlement and cracking, which has been long recognized by the Iowa Department of Transportation (DOT). A commonly recommended solution is to integrally attach the approach slab to the bridge abutment. This study sought to supplement a previous project by instrumenting, monitoring, and analyzing the behavior of an approach slab tied to a integral abutment bridge. The primary objective of this investigation was to evaluate the performance of the approach slab. To satisfy the research needs, the project scope involved reviewing a similar previous study, implementing a health monitoring system on the approach slab, interpreting the data obtained during the evaluation, and conducting periodic visual inspections of the bridge and approach slab. Based on the information obtained from the testing, the following general conclusions were made: the integral connection between the approach slab and the bridge appears to function well with no observed distress at this location and no relative longitudinal movement measured between the two components; the measured strains in the approach slabs indicate a force exists at the expansion joint and should be taken into consideration when designing both the approach slab and the bridge and the observed responses generally followed an annual cyclic and/or short term cyclic pattern over time; the expansion joint at one side of the approach slab does not appear to be functioning as well as elsewhere; much larger frictional forces were observed in this study compared to the previous study.
Resumo:
Many of the bridges in the state of Iowa have type ‘CF’, ‘EE’, or ‘EF’ expansion joints installed in the bridge approach slabs. These joints, which are typically 4” wide, are currently filled with a foam expansion joint material that is covered with a sealant. Over time the sealant begins to pull off of the walls of the joint and it ultimately fails. The joint, which is now exposed to the weather, is then filled with water and solids. The foam joint material, which is lighter than water, floats out of the joint onto the highway. This foam resembles a large 4” X 6” plank and poses a threat to motorists. A possible solution to this problem would be to replace the foam material with rubber buffings. Rubber buffings are a by-product of the tire retread industry.
Resumo:
In the United States many bridge structures have been designed without consideration for their unique construction problems. Many problems could have been avoided if construction knowledge and experience was utilized in the design process. A systematic process is needed to create and capture construction knowledge for use in the design process. This study was conducted to develop a system to capture construction considerations from field people and incorporate it into a knowledge-base for use by the bridge designers. This report presents the results of this study. As a part of this study a microcomputer-based constructability system has been developed. The system is a user-friendly microcomputer database which codifies construction knowledge, provides easy access to specifications, and provides simple design computation checks for the designer. A structure for the final database was developed and used in the prototype system. A process for collecting, developing and maintaining the database is presented and explained. The study involved a constructability survey, interviews with designers and constructors, and visits to construction sites to collect constuctability concepts. The report describes the development of the constructability system and addresses the future needs for the Iowa Department of Transportation to make the system operational. A user's manual for the system is included along with the report.
Resumo:
Recent reports have indicated that 23.5% of the nation's highway bridges are structurally deficient and 17.7% are functionally obsolete. A significant number of these bridges are on the Iowa secondary road system where over 86% of the rural bridge management responsibilities are assigned to the counties. Some of the bridges can be strengthened or otherwise rehabilitated, but many more are in need of immediate replacement. In a recent investigation (HR-365 "Evaluation of Bridge Replacement Alternatives for the County Bridge System") several types of replacement bridges that are currently being used on low volume roads were identified. It was also determined that a large number of counties (69%) have the ability and are interested in utilizing their own forces to design and construct short span bridges. In reviewing the results from HR-365, the research team developed one "new" bridge replacement concept and a modification of a replacement system currently being used. Both of these bridge replacement alternatives were investigated in this study, the results of which are presented in two volumes. This volume (Volume 1) presents the results of Concept 1 - Steel Beam Precast Units. Concept 2 - Modification of the Beam-in-Slab Bridge is presented in Volume 2. Concept 1, involves the fabrication of precast units (two steel beams connected by a concrete slab) by county work forces. Deck thickness is limited so that the units can be fabricated at one site and then transported to the bridge site where they are connected and the remaining portion of the deck placed. Since Concept 1 bridge is primarily intended for use on low-volume roads, the precast units can be constructed with new or used beams. In the experimental part of the investigation, there were three types of static load tests: small scale connector tests, "handling strength" tests, and service and overload tests of a model bridge. Three finite element models for analyzing the bridge in various states of construction were also developed. Small scale connector tests were completed to determine the best method of connecting the precast double-T (PCDT) units. "Handling strength" tests on an individual PCDT unit were performed to determine the strength and behavior of the precast unit in this configuration. The majority of the testing was completed on the model bridge [L=9,750 mm (32 ft), W=6,400 mm (21 ft)] which was fabricated using the precast units developed. Some of the variables investigated in the model bridge tests were number of connectors required to connect adjacent precast units, contribution of diaphragms to load distribution, influence of position of diaphragms on bridge strength and load distribution, and effect of cast-in-place portion of deck on load distribution. In addition to the service load tests, the bridge was also subjected to overload conditions. Using the finite element models developed, one can predict the behavior and strength of bridges similar to the laboratory model as well as design them. Concept 1 has successfully passed all laboratory testing; the next step is to field test it.
Resumo:
This project continues the research which addresses the numerous bridge problems on the Iowa secondary road system. It is a continuation (Phase 2) of Project HR-382, in which two replacement alternatives (Concept 1: Steel Beam Precast Units and Concept 2: Modification of the Benton County Beam-in-Slab Bridge) were investigated. In previous research for concept 1, a precast unit bridge was developed through laboratory testing. The steel-beam precast unit bridge requires the fabrication of precast double-tee (PCDT) units, each consisting of two steel beams connected by a reinforced concrete deck. The weight of each PCDT unit is minimized by limiting the deck thickness to 4 in., which permits the units to be constructed off-site and then transported to the bridge site. The number of units required is a function of the width of bridge desired. Once the PCDT units are connected, a cast-in-place reinforced concrete deck is cast over the PCDT units and the bridge railing attached. Since the steel beam PCDT unit bridge design is intended primarily for use on low-volume roads, used steel beams can be utilized for a significant cost savings. In previous research for concept 2, an alternate shear connector (ASC) was developed and subjected to static loading. In this investigation, the ASC was subjected to cyclic loading in both pushout specimens and composite beam tests. Based on these tests, the fatigue strength of the ASC was determined to be significantly greater than that required in typical low volume road single span bridges. Based upon the construction and service load testing, the steel-beam precast unit bridge was successfully shown to be a viable low volume road bridge alternative. The construction process utilized standard methods resulting in a simple system that can be completed with a limited staff. Results from the service load tests indicated adequate strength for all legal loads. An inspection of the bridge one year after its construction revealed no change in the bridge's performance. Each of the systems previously described are relatively easy to construct. Use of the ASC rather than the welded studs significantly simplified the work, equipment, and materials required to develop composite action between the steel beams and the concrete deck.
Resumo:
The need for upgrading a large number of understrength and obsolete bridges in the United States has been well documented in the literature. Through the performance of several Iowa DOT projects, the concept of strengthening bridges (simple and continuous spans) by post-tensioning has been developed. The purpose of this project was to investigate two additional strengthening alternatives that may be more efficient than post-tensioning in certain situations. The research program for each strengthening scheme included a literature review, laboratory testing of the strengthening scheme, and a finite-element analysis of the scheme. For clarity the two strengthening schemes are presented separately. In Part 1 of this report, the strengthening of existing steel stringers in composite steel beam concrete-deck bridges by providing partial end restraint was shown to be feasible. Part 2 of this report summarizes the research that was undertaken to strengthen the negative moment regions of continuous, composite bridges. Two schemes were investigated: post-compression of stringers and superimposed trusses within the stringers.
Resumo:
The need to upgrade a large number of understrength and obsolete bridges in the U.S. has been well documented in the literature. Through several Iowa DOT projects, the concept of strengthening simple-span bridges by post-tensioning has been developed. The purpose of the project described in this report was to investigate the use of post-tensioning for strengthening continuous composite bridges. In a previous, successfully completed investigation, the feasibility of strengthening continuous, composite bridges by post-tensioning was demonstrated on a laboratory 1/3-scale-model bridge (3 spans: 41 ft 11 in. x 8 ft 8 in.). This project can thus be considered the implementation phase. The bridge selected for strengthening was in Pocahontas County near Fonda, Iowa, on County Road N28. With finite element analysis, a post-tensioning system was developed that required post-tensioning of the positive moment regions of both the interior and exterior beams. During the summer of 1988, the strengthening system was installed along with instrumentation to determine the bridge's response and behavior. Before and after post-tensioning, the bridge was subjected to truck loading (1 or 2 trucks at various predetermined critical locations) to determine the effectiveness of the strengthening system. The bridge, with the strengthening system in place, was inspected approximately every three months to determine any changes in its appearance or behavior. In 1989, approximately one year after the initial strengthening, the bridge was retested to identify any changes in its behavior. Post-tensioning forces were removed to reveal any losses over the one-year period. Post-tensioning was reapplied to the bridge, and the bridge was tested using the same loading program used in 1988. Except for at a few locations, stresses were reduced in the bridge the desired amount. At a few locations flexural stresses in the steel beams are still above 18 ksi, the allowable inventory stress for A7 steel. Although maximum stresses are above the inventory stress by about 2 ksi, they are about 5 ksi below the allowable operating stress; therefore, the bridge no longer needs to be load-posted.
Resumo:
Precast prestressed concrete panels have been used as subdecks in bridge construction in Iowa and other states. To investigate the performance of these types of composite slabs at locations adjacent to abutment and pier diaphragms in skewed bridges, a research prcject which involved surveys of design agencies and precast producers, field inspections of existing bridges, analytical studies, and experimental testing was conducted. The survey results from the design agencies and panel producers showed that standardization of precast panel construction would be desirable, that additional inspections at the precast plant and at the bridge site would be beneficial, and that some form of economical study should be undertaken to determine actual cost savings associated with composite slab construction. Three bridges in Hardin County, Iowa were inspected to observe general geometric relationships, construction details, and to note the visual condition of the bridges. Hairline cracks beneath several of the prestressing strands in many of the precast panels were observed, and a slight discoloration of the concrete was seen beneath most of the strands. Also, some rust staining was visible at isolated locations on several panels. Based on the findings of these inspections, future inspections are recommended to monitor the condition of these and other bridges constructed with precast panel subdecks. Five full-scale composite slab specimens were constructed in the Structural Engineering Laboratory at Iowa State University. One specimen modeled bridge deck conditions which are not adjacent to abutment or pier diaphragms, and the other four specimens represented the geometric conditions which occur for skewed diaphragms of 0, 15, 30, and 40 degrees. The specimens were subjected to wheel loads of service and factored level magnitudes at many locations on the slab surface and to concentrated loads which produced failure of the composite slab. The measured slab deflections and bending strains at both service and factored load levels compared reasonably well with the results predicted by simplified Finite element analyses of the specimens. To analytically evaluate the nominal strength for a composite slab specimen, yield-line and punching shear theories were applied. Yield-line limit loads were computed using the crack patterns generated during an ultimate strength test. In most cases, these analyses indicated that the failure mode was not flexural. Since the punching shear limit loads in most instances were close to the failure loads, and since the failure surfaces immediately adjacent to the wheel load footprint appeared to be a truncated prism shape, the probable failure mode for all of the specimens was punching shear. The development lengths for the prestressing strands in the rectangular and trapezoidal shaped panels was qualitatively investigated by monitoring strand slippage at the ends of selected prestressing strands. The initial strand transfer length was established experimentally by monitoring concrete strains during strand detensioning, and this length was verified analytically by a finite element analysis. Even though the computed strand embedment lengths in the panels were not sufficient to fully develop the ultimate strand stress, sufficient stab strength existed. Composite behavior for the slab specimens was evaluated by monitoring slippage between a panel and the topping slab and by computation of the difference in the flexural strains between the top of the precast panel and the underside of the topping slab at various locations. Prior to the failure of a composite slab specimen, a localized loss of composite behavior was detected. The static load strength performance of the composite slab specimens significantly exceeded the design load requirements. Even with skew angles of up to 40 degrees, the nominal strength of the slabs did not appear to be affected when the ultimate strength test load was positioned on the portion of each slab containing the trapezoidal-shaped panel. At service and factored level loads, the joint between precast panels did not appear to influence the load distribution along the length of the specimens. Based on the static load strength of the composite slab specimens, the continued use of precast panels as subdecks in bridge deck construction is recommended.