887 resultados para Boundary Value Problems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During recent years, the theory of differential inequalities has been extensively used to discuss singular perturbation problems and method of lines to partial differential equations. The present thesis deals with some differential inequality theorems and their applications to singularly perturbed initial value problems, boundary value problems for ordinary differential equations in Banach space and initial boundary value problems for parabolic differential equations. The method of lines to parabolic and elliptic differential equations are also dealt The thesis is organised into nine chapters

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Eady model, where the meridional potential vorticity (PV) gradient is zero, perturbation energy growth can be partitioned cleanly into three mechanisms: (i) shear instability, (ii) resonance, and (iii) the Orr mechanism. Shear instability involves two-way interaction between Rossby edge waves on the ground and lid, resonance occurs as interior PV anomalies excite the edge waves, and the Orr mechanism involves only interior PV anomalies. These mechanisms have distinct implications for the structural and temporal linear evolution of perturbations. Here, a new framework is developed in which the same mechanisms can be distinguished for growth on basic states with nonzero interior PV gradients. It is further shown that the evolution from quite general initial conditions can be accurately described (peak error in perturbation total energy typically less than 10%) by a reduced system that involves only three Rossby wave components. Two of these are counterpropagating Rossby waves—that is, generalizations of the Rossby edge waves when the interior PV gradient is nonzero—whereas the other component depends on the structure of the initial condition and its PV is advected passively with the shear flow. In the cases considered, the three-component model outperforms approximate solutions based on truncating a modal or singular vector basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we use the no-response test idea, introduced in Luke and Potthast (2003) and Potthast (Preprint) and the inverse obstacle problem, to identify the interface of the discontinuity of the coefficient gamma of the equation del (.) gamma(x)del + c(x) with piecewise regular gamma and bounded function c(x). We use infinitely many Cauchy data as measurement and give a reconstructive method to localize the interface. We will base this multiwave version of the no-response test on two different proofs. The first one contains a pointwise estimate as used by the singular sources method. The second one is built on an energy (or an integral) estimate which is the basis of the probe method. As a conclusion of this, the probe and the singular sources methods are equivalent regarding their convergence and the no-response test can be seen as a unified framework for these methods. As a further contribution, we provide a formula to reconstruct the values of the jump of gamma(x), x is an element of partial derivative D at the boundary. A second consequence of this formula is that the blow-up rate of the indicator functions of the probe and singular sources methods at the interface is given by the order of the singularity of the fundamental solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We solve a Dirichlet boundary value problem for the Klein–Gordon equation posed in a time-dependent domain. Our approach is based on a general transform method for solving boundary value problems for linear and integrable nonlinear PDE in two variables. Our results consist of the inversion formula for a generalized Fourier transform, and of the application of this generalized transform to the solution of the boundary value problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel topology of the radial basis function (RBF) neural network, referred to as the boundary value constraints (BVC)-RBF, which is able to automatically satisfy a set of BVC. Unlike most existing neural networks whereby the model is identified via learning from observational data only, the proposed BVC-RBF offers a generic framework by taking into account both the deterministic prior knowledge and the stochastic data in an intelligent manner. Like a conventional RBF, the proposed BVC-RBF has a linear-in-the-parameter structure, such that it is advantageous that many of the existing algorithms for linear-in-the-parameters models are directly applicable. The BVC satisfaction properties of the proposed BVC-RBF are discussed. Finally, numerical examples based on the combined D-optimality-based orthogonal least squares algorithm are utilized to illustrate the performance of the proposed BVC-RBF for completeness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Boltzmann equation in presence of boundary and initial conditions, which describes the general case of carrier transport in microelectronic devices is analysed in terms of Monte Carlo theory. The classical Ensemble Monte Carlo algorithm which has been devised by merely phenomenological considerations of the initial and boundary carrier contributions is now derived in a formal way. The approach allows to suggest a set of event-biasing algorithms for statistical enhancement as an alternative of the population control technique, which is virtually the only algorithm currently used in particle simulators. The scheme of the self-consistent coupling of Boltzmann and Poisson equation is considered for the case of weighted particles. It is shown that particles survive the successive iteration steps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three-point difference scheme recently proposed in Ref. 1 for the numerical solution of a class of linear, singularly perturbed, two-point boundary-value problems is investigated. The scheme is derived from a first-order approximation to the original problem with a small deviating argument. It is shown here that, in the limit, as the deviating argument tends to zero, the difference scheme converges to a one-sided approximation to the original singularly perturbed equation in conservation form. The limiting scheme is shown to be stable on any uniform grid. Therefore, no advantage arises from using the deviating argument, and the most accurate and efficient results are obtained with the deviation at its zero limit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we describe recent progress on the design, analysis and implementation of hybrid numerical-asymptotic boundary integral methods for boundary value problems for the Helmholtz equation that model time harmonic acoustic wave scattering in domains exterior to impenetrable obstacles. These hybrid methods combine conventional piecewise polynomial approximations with high-frequency asymptotics to build basis functions suitable for representing the oscillatory solutions. They have the potential to solve scattering problems accurately in a computation time that is (almost) independent of frequency and this has been realized for many model problems. The design and analysis of this class of methods requires new results on the analysis and numerical analysis of highly oscillatory boundary integral operators and on the high-frequency asymptotics of scattering problems. The implementation requires the development of appropriate quadrature rules for highly oscillatory integrals. This article contains a historical account of the development of this currently very active field, a detailed account of recent progress and, in addition, a number of original research results on the design, analysis and implementation of these methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove unique existence of solution for the impedance (or third) boundary value problem for the Helmholtz equation in a half-plane with arbitrary L∞ boundary data. This problem is of interest as a model of outdoor sound propagation over inhomogeneous flat terrain and as a model of rough surface scattering. To formulate the problem and prove uniqueness of solution we introduce a novel radiation condition, a generalization of that used in plane wave scattering by one-dimensional diffraction gratings. To prove existence of solution and a limiting absorption principle we first reformulate the problem as an equivalent second kind boundary integral equation to which we apply a form of Fredholm alternative, utilizing recent results on the solvability of integral equations on the real line in [5].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe some recent advances in the numerical solution of acoustic scattering problems. A major focus of the paper is the efficient solution of high frequency scattering problems via hybrid numerical-asymptotic boundary element methods. We also make connections to the unified transform method due to A. S. Fokas and co-authors, analysing particular instances of this method, proposed by J. A. De-Santo and co-authors, for problems of acoustic scattering by diffraction gratings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an approach to the nonvanishing boundary value problem for integrable hierarchies based on the dressing method. Then we apply the method to the AKNS hierarchy. The solutions are found by introducing appropriate vertex operators that takes into account the boundary conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main feature of partition of unity methods such as the generalized or extended finite element method is their ability of utilizing a priori knowledge about the solution of a problem in the form of enrichment functions. However, analytical derivation of enrichment functions with good approximation properties is mostly limited to two-dimensional linear problems. This paper presents a procedure to numerically generate proper enrichment functions for three-dimensional problems with confined plasticity where plastic evolution is gradual. This procedure involves the solution of boundary value problems around local regions exhibiting nonlinear behavior and the enrichment of the global solution space with the local solutions through the partition of unity method framework. This approach can produce accurate nonlinear solutions with a reduced computational cost compared to standard finite element methods since computationally intensive nonlinear iterations can be performed on coarse global meshes after the creation of enrichment functions properly describing localized nonlinear behavior. Several three-dimensional nonlinear problems based on the rate-independent J (2) plasticity theory with isotropic hardening are solved using the proposed procedure to demonstrate its robustness, accuracy and computational efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we investigate the behavior of a family of steady-state solutions of a nonlinear reaction diffusion equation when some reaction and potential terms are concentrated in a e-neighborhood of a portion G of the boundary. We assume that this e-neighborhood shrinks to G as the small parameter e goes to zero. Also, we suppose the upper boundary of this e-strip presents a highly oscillatory behavior. Our main goal here was to show that this family of solutions converges to the solutions of a limit problem, a nonlinear elliptic equation that captures the oscillatory behavior. Indeed, the reaction term and concentrating potential are transformed into a flux condition and a potential on G, which depends on the oscillating neighborhood. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce and analyze hp-version discontinuous Galerkin (dG) finite element methods for the numerical approximation of linear second-order elliptic boundary-value problems in three-dimensional polyhedral domains. To resolve possible corner-, edge- and corner-edge singularities, we consider hexahedral meshes that are geometrically and anisotropically refined toward the corresponding neighborhoods. Similarly, the local polynomial degrees are increased linearly and possibly anisotropically away from singularities. We design interior penalty hp-dG methods and prove that they are well-defined for problems with singular solutions and stable under the proposed hp-refinements. We establish (abstract) error bounds that will allow us to prove exponential rates of convergence in the second part of this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this paper is to establish exponential convergence of $hp$-version interior penalty (IP) discontinuous Galerkin (dG) finite element methods for the numerical approximation of linear second-order elliptic boundary-value problems with homogeneous Dirichlet boundary conditions and piecewise analytic data in three-dimensional polyhedral domains. More precisely, we shall analyze the convergence of the $hp$-IP dG methods considered in [D. Schötzau, C. Schwab, T. P. Wihler, SIAM J. Numer. Anal., 51 (2013), pp. 1610--1633] based on axiparallel $\sigma$-geometric anisotropic meshes and $\bm{s}$-linear anisotropic polynomial degree distributions.