978 resultados para Bothrops jararacussu venom
Resumo:
PrTX-I, a non-catalytic and myotoxic Lys49-PLA(2) from Bothrops pirajai venom has been crystallized alone and in complex with bromophenacyl bromide (BPB), alpha-tocopherol and alpha-tocopherol acetate inhibitors. These crystals have shown to diffract X-rays between 2.34 and 1.65 angstrom resolution. All complexes crystals are isomorphous and belong to the space group P2(1) whereas native PrTX-I crystals belong to the P3(1)21.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A fibrinogenolytic metalloproteinase from Bothrops moojeni venom, named moojenin, was purified by a combination of ion-exchange chromatography on DEAE-Sephacel and gel filtration on Sephacryl S-300. SDS-PAGE analysis indicated that moojenin consists of a single polypeptide chain and has a molecular mass about 45 kDa. Sequencing of moojenin by Edman degradation revealed the amino acid sequence LGPDIVSPPVCGNELLEV-GEECDCGTPENCQNE, which showed strong identity with many other snake venom metalloproteinases (SVMPs). The enzyme cleaves the A alpha-chain of fibrinogen first, followed by the E beta-chain, and shows no effects on the gamma-chain. Moojenin showed a coagulant activity on bovine plasma about 3.1 fold lower than crude venom. The fibrinogenolytic and coagulant activities of the moojenin were abolished by preincubation with EDTA, 1,10-phenanthroline and beta-mercaptoethanol. Moojenin showed maximum activity at temperatures ranging from 30 to 40 degrees C and its optimal pH was 4.0. Its activity was completely lost at temperatures above 50 degrees C. Moojenin induced necrosis in liver and muscle, evidenced by morphological alterations, but did not cause histological alterations in mouse lungs, kidney or heart. Moojenin rendered the blood uncoagulatable when it was intraperitoneally administered into mice. This metalloproteinase may be of medical interest because of its anticoagulant activity. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Two myotoxic and noncatalytic Lys49-phospholipases A2 (braziliantoxin-II and MT-II) and a myotoxic and catalytic phospholipase A2 (braziliantoxin-III) from the venom of the Amazonian snake Bothrops brazili were crystallized. The crystals diffracted to resolutions in the range 2.562.05 angstrom and belonged to space groups P3121 (braziliantoxin-II), P6522 (braziliantoxin-III) and P21 (MT-II). The structures were solved by molecular-replacement techniques. Both of the Lys49-phospholipases A2 (braziliantoxin-II and MT-II) contained a dimer in the asymmetric unit, while the Asp49-phospholipase A2 braziliantoxin-III contained a monomer in its asymmetric unit. Analysis of the quaternary assemblies of the braziliantoxin-II and MT-II structures using the PISA program indicated that both models have a dimeric conformation in solution. The same analysis of the braziliantoxin-III structure indicated that this protein does not dimerize in solution and probably acts as a monomer in vivo, similar to other snake-venom Asp49-phospholipases A2.
Resumo:
Bothrops insularis venom contains a variety of substances presumably responsible for several pharmacological effects. We investigated the biochemical and biological effects of phospholipase A(2) protein isolated from B. insularis venom and the chromatographic profile showed 7 main fractions and the main phospholipase A(2) (PLA(2)) enzymatic activity was detected in fractions IV and V. Fraction IV was submitted to a new chromatographic procedure on ion exchange chromatography, which allowed the elution of 5 main fractions designated as lV-1 to IV-5, from which lV-4 constituted the main fraction. The molecular homogeneity of this fraction was characterized by high-performance liquid chromatography (HPLC) and demonstrated by mass spectrometry (MS), which showed a molecular mass of 13984.20 Da; its N-terminal sequence presented a high amino acid identity (up to 95%) with the PLA(2) of Bothrops jararaca and Bothrops asper. Phospholipase A(2) isolated from B. insularis (Bi PLA(2)) venom (10 mu g/mL) was also studied as to its effect on the renal function of isolated perfused kidneys of Wistar rats (n = 6). Bi PLA(2) increased perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF) and glomerular filtration rate (GFR). Sodium (%TNa+) and chloride tubular reabsorption (%TCl-) decreased at 120 min, without alteration in potassium transport. In conclusion, PLA(2) isolated from B. insularis venom promoted renal alterations in the isolated perfused rat kidney. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Bothrops marajoensis is found in the savannah of Marajo Island in the State of Par S and regions of Amapa State, Brazil. The aim of the work was to study the renal and cardiovascular effects of the B. marajoensis venom and phospholipase A(2) (PLA(2)). The venom was fractionated by Protein Pack 5PW. N-terminal amino acid sequencing of sPLA(2) showed amino acid identity with other lysine K49sPLA(2)s of snake venom. B. marajoensis venom (30 mu g/mL) decreased the perfusion pressure, renal vascular resistance, urinary flow, glomerular filtration rate and sodium tubular transport. PLA(2) did not change the renal parameters. The perfusion pressure of the mesenteric bed did not change after infusion of venom. In isolated heart, the venom decreased the force of contraction and increased PP but did not change coronary flow. In the arterial pressure, the venom and PLA(2) decreased mean arterial pressure and cardiac frequency. The presence of atrial flutter and late hyperpolarisation reversed, indicating QRS complex arrhythmia and dysfunction in atrial conduction. In conclusion, B. marajoensis venom and PLA(2) induce hypotension and bradycardia while simultaneously blocking electrical conduction in the heart. Moreover, the decrease in glomerular filtration rate, urinary flow and electrolyte transport demonstrates physiological changes to the renal system. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Background: Harpalycin 2 (HP-2) is an isoflavone isolated from the leaves of Harpalyce brasiliana Benth., a snakeroot found in northeast region of Brazil and used in folk medicine to treat snakebite. Its leaves are said to be anti-inflammatory. Secretory phospholipases A(2) are important toxins found in snake venom and are structurally related to those found in inflammatory conditions in mammals, as in arthritis and atherosclerosis, and for this reason can be valuable tools for searching new anti-phospholipase A(2) drugs.Methods: HP-2 and piratoxin-III (PrTX-III) were purified through chromatographic techniques. The effect of HP-2 in the enzymatic activity of PrTX-III was carried out using 4-nitro-3-octanoyloxy-benzoic acid as the substrate. PrTX-III induced platelet aggregation was inhibited by HP-2 when compared to aristolochic acid and p-bromophenacyl bromide (p-BPB). In an attempt to elucidate how HP-2 interacts with PrTX-III, mass spectrometry, circular dichroism and intrinsic fluorescence analysis were performed. Docking scores of the ligands (HP-2, aristolochic acid and p-BPB) using PrTX-III as target were also calculated.Results: HP-2 inhibited the enzymatic activity of PrTX-III (IC50 11.34 +/- 0.28 mu g/mL) although it did not form a stable chemical complex in the active site, since mass spectrometry measurements showed no difference between native (13,837.34 Da) and HP-2 treated PrTX-III (13,856.12 Da). A structural analysis of PrTX-III after treatment with HP-2 showed a decrease in dimerization and a slight protein unfolding. In the platelet aggregation assay, HP-2 previously incubated with PrTX-III inhibited the aggregation when compared with untreated protein. PrTX-III chemical treated with aristolochic acid and p-BPB, two standard PLA(2) inhibitors, showed low inhibitory effects when compared with the HP-2 treatment. Docking scores corroborated these results, showing higher affinity of HP-2 for the PrTX-III target (PDB code: 1GMZ) than aristolochic acid and p-BPB. HP-2 previous incubated with the platelets inhibits the aggregation induced by untreated PrTX-III as well as arachidonic acid.Conclusion: HP-2 changes the structure of PrTX-III, inhibiting the enzymatic activity of this enzyme. In addition, PrTX-III platelet aggregant activity was inhibited by treatment with HP-2, p-BPB and aristolochic acid, and these results were corroborated by docking scores.
Resumo:
BjVIII is a new myotoxic Lys49-PLA2 isolated from Bothrops jararacussu venom that exhibits atypical effects on human platelet aggregation. To better understand the mode of action of BjVIII, crystallographic studies were initiated. Two crystal forms were obtained, both containing two molecules in the asymmetric unit (ASU). Synchrotron radiation diffraction data were collected to 2.0 angstrom resolution and 1.9 angstrom resolution for crystals belonging to the space group P2(1)2(1)2(1) (a = 48.4 angstrom, b = 65.3 angstrom, c = 84.3 angstrom) and space group P3(1)21 (a = b = 55.7 angstrom, c = 127.9 angstrom), respectively. Refinement is currently in progress and the refined structures are expected to shed light on the unusual platelet aggregation activity observed for BjVIII.
Resumo:
The LY549-PLA(2)s myotoxins have attracted attention as models for the induction of myonecrosis by a catalytically independent mechanism of action. Structural studies and biological activities have demonstrated that the myotoxic activity of LYS49-PLA(2) is independent of the catalytic activity site. The myotoxic effect is conventionally thought to be to due to the C-terminal region 111-121, which plays an effective role in membrane damage. In the present study, Bn IV LYS49-PLA(2) was isolated from Bothrops neuwiedi snake venom in complex with myristic acid (CH3(CH2)(12)COOH) and its overall structure was refined at 2.2 angstrom resolution. The Bn IV crystals belong to monoclinic space group P2(1) and contain a dimer in the asymmetric unit. The unit cell parameters are a = 38.8, b = 70.4, c = 44.0 angstrom. The biological assembly is a "conventional dimer" and the results confirm that dimer formation is not relevant to the myotoxic activity. Electron density map analysis of the Bn IV structure shows clearly the presence of myristic acid in catalytic site. The relevant structural features for myotoxic activity are located in the C-terminal region and the Bn IV C-terminal residues NKKYRY are a probable heparin binding domain. These findings indicate that the mechanism of interaction between Bn IV and muscle cell membranes is through some kind of cell signal transduction mediated by heparin complexes. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Polyanionic substances are known to inhibit the myotoxic effects of some crotalide snake venoms. Bothropstoxin-I (BthTX-I), a basic Lys49 phospholipase (PLA(2)) homologue from Bothrops jararacussu venom, besides inducing muscle damage, also promotes the blockade of both directly and indirectly evoked contractions in mouse neuromuscular preparation. In this work, we evaluated the ability of suramin, a polysulfonated naphtylurea derivative, to antagonize the myotoxic and the paralyzing activities of BthTX-I on mice neuromuscular junction in vitro. Myotoxicity was assessed by light and electronic microscopic analysis of extensor digitorum longus (EDL) muscles; paralyzing activity was evaluated through the recording of both directly and indirectly evoked contractions of phrenic-diaphragm (PD) preparations. BthTX-I (1 muM) alone, or pre-incubated with suramin (10 muM) at 37degreesC for 15 min was added to the preparations for 120 min. BthTX-I induced histological alterations typical of myonecrosis in 14.6 +/- 1.0% of EDL muscle fibers. In addition, BthTX-I blocked 50% of both directly and indirectly evoked contractions in PD preparations in 72.1 +/- 9.1 and 21.1 +/- 2.0 min, respectively. Pre-incubation with suramin abolished both the muscle-damaging and muscle-paralyzing activities of BthTX-I. Since suramin is a polyanionic substance, we suggested that its effects result from the formation of inactive acid-base complexes with BthTX-I. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
An acidic phospholipase A(2) (PLA(2)) isolated from Bothrops jararacussu snake venom was crystallized with two inhibitors: alpha-tocopherol (vitamin E) and p-bromophenacyl bromide (BPB). The crystals diffracted at 1.45- and 1.85-Angstrom resolution, respectively, for the complexes with alpha-tocopherol and p-bromophenacyl bromide. The crystals are not isomorphous with those of the native protein, suggesting the inhibitors binding was successful and changes in the quaternary structure may have occurred. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The crystal structure of an acidic phospholipase A(2) isolated from Bothrops jararacussu venom (BthA-I) chemically modified with p-bromophenacyl bromide (BPB) has been determined at 1.85 angstrom resolution. The catalytic, platelet-aggregation inhibition, anticoagulant and hypotensive activities of BthA-I are abolished by ligand binding. Electron-density maps permitted unambiguous identification of inhibitor covalently bound to His48 in the substrate-binding cleft. The BthA-I-BPB complex contains three structural regions that are modified after inhibitor binding: the Ca2+-binding loop, ss-wing and C-terminal regions. Comparison of BthA-I-BPB with two other BPB-inhibited PLA(2) structures suggests that in the absence of Na+ ions at the Ca2+- binding loop, this loop and other regions of the PLA(2)s undergo structural changes. The BthA-I-BPB structure reveals a novel oligomeric conformation. This conformation is more energetically and conformationally stable than the native structure and the abolition of pharmacological activities by the ligand may be related to the oligomeric structural changes. A residue of the `pancreatic' loop (Lys69), which is usually attributed as providing the anticoagulant effect, is in the dimeric interface of BthA-I-BPB, leading to a new hypothesis regarding the abolition of this activity by BPB.
Resumo:
Phospholipases A(2) belong to the superfamily of proteins which hydrolyzes the sn-2 acyl groups of membrane phospholipids to release arachidonic acid and lysophospholipids. An acidic phospholipase A(2) isolated from Bothrops juraracussu snake venom presents a high catalytic, platelet aggregation inhibition and hypotensive activities. This protein was crystallized in two oligomeric states: monomeric and dimeric. The crystal structures were solved at 1.79 and 1.90 Angstrom resolution, respectively, for the two states. It was identified a Na+ ion at the center of Ca2+-binding site of the monomeric form. A novel dimeric conformation with the active sites exposed to the solvent was observed. Conformational states of the molecule may be due to the physicochemical conditions used in the crystallization experiments. We suggest dimeric state is one found in vivo. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A myotoxic Asp49-phospholipase A(2) (Asp49-PLA(2)) with low catalytic activity (BthTX-II from Bothrops jararacussu venom) was crystallized and the molecular-replacement solution has been obtained with a dimer in the asymmetric unit. The quaternary structure of BthTX-II resembles the myotoxic Asp49-PLA2 PrTX-III (piratoxin III from B. pirajai venom) and all non-catalytic and myotoxic dimeric Lys49-PLA(2)s. Despite of this, BthTX-II is different from the highly catalytic and non-myotoxic BthA-I (acidic PLA(2) from B. jararacussu) and other Asp49-PLA(2)s. BthTX-II structure showed a severe distortion of calcium-binding loop leading to displacement of the C-terminal region. Tyr28 side chain, present in this region, is in an opposite position in relation to the same residue in the catalytic activity Asp49-PLA(2)s, making a hydrogen bond with the atom 0 delta 2 of the catalytically active Asp49, which should coordinate the calcium. This high distortion may also be confirmed by the inability of BthTX-II to bind Na+ ions at the Ca2+-binding loop, despite of the crystallization to have occurred in the presence of this ion. In contrast, other Asp49-PLA(2)s which are able to bind Ca2+ ions are also able to bind Na+ ions at this loop. The comparison with other catalytic, non-catalytic and inhibited PLA(2)s indicates that the BthTX-II is not able to bind calcium ions; consequently, we suggest that its low catalytic function is based on an alternative way compared with other PLA(2)s. (c) 2008 Elsevier B.V All rights reserved.