975 resultados para Bose-einstein Condensate
Resumo:
Recent experimental measurements of atomic intensity correlations through atom shot noise suggest that atomic quadrature phase correlations may soon be measured with a similar precision. We propose a test of local realism with mesoscopic numbers of massive particles based on such measurements. Using dissociation of a Bose-Einstein condensate of diatomic molecules into bosonic atoms, we demonstrate that strongly entangled atomic beams may be produced which possess Einstein-Podolsky-Rosen (EPR) correlations in field quadratures in direct analogy to the position and momentum correlations originally considered by EPR.
Resumo:
We propose a scheme for parametric amplification and phase conjugation of an atomic Bose-Einstein condensate (BEC) via stimulated dissociation of a BEC of molecular dimers consisting of bosonic atoms. This can potentially be realized via coherent Raman transitions or using a magnetic Feshbach resonance. We show that the interaction of a small incoming atomic BEC with a (stationary) molecular BEC can produce two counterpropagating atomic beams - an amplified atomic BEC and its phase-conjugate or "time-reversed" replica. The two beams can possess strong quantum correlation in the relative particle number, with squeezed number-difference fluctuations.
Resumo:
In this paper, we present a theoretical study of a Bose-Einstein condensate of interacting bosons in a quartic trap in one, two, and three dimensions. Using Thomas-Fermi approximation, suitably complemented by numerical solutions of the Gross-Pitaevskii equation, we study the ground sate condensate density profiles, the chemical potential, the effects of cross-terms in the quartic potential, temporal evolution of various energy components of the condensate, and width oscillations of the condensate. Results obtained are compared with corresponding results for a bose condensate in a harmonic confinement.
Resumo:
We consider a binary Bose-Einstein condensate (BEC) described by a system of two-dimensional (2D) Gross-Pitaevskii equations with the harmonic-oscillator trapping potential. The intraspecies interactions are attractive, while the interaction between the species may have either sign. The same model applies to the copropagation of bimodal beams in photonic-crystal fibers. We consider a family of trapped hidden-vorticity (HV) modes in the form of bound states of two components with opposite vorticities S(1,2) = +/- 1, the total angular momentum being zero. A challenging problem is the stability of the HV modes. By means of a linear-stability analysis and direct simulations, stability domains are identified in a relevant parameter plane. In direct simulations, stable HV modes feature robustness against large perturbations, while unstable ones split into fragments whose number is identical to the azimuthal index of the fastest growing perturbation eigenmode. Conditions allowing for the creation of the HV modes in the experiment are discussed too. For comparison, a similar but simpler problem is studied in an analytical form, viz., the modulational instability of an HV state in a one-dimensional (1D) system with periodic boundary conditions (this system models a counterflow in a binary BEC mixture loaded into a toroidal trap or a bimodal optical beam coupled into a cylindrical shell). We demonstrate that the stabilization of the 1D HV modes is impossible, which stresses the significance of the stabilization of the HV modes in the 2D setting.
Resumo:
The properties of the localized states of a two-component Bose-Einstein condensate confined in a nonlinear periodic potential (nonlinear optical lattice) are investigated. We discuss the existence of different types of solitons and study their stability by means of analytical and numerical approaches. The symmetry properties of the localized states with respect to nonlinear optical lattices are also investigated. We show that nonlinear optical lattices allow the existence of bright soliton modes with equal symmetry in both components and bright localized modes of mixed symmetry type, as well as dark-bright bound states and bright modes on periodic backgrounds. In spite of the quasi-one-dimensional nature of the problem, the fundamental symmetric localized modes undergo a delocalizing transition when the strength of the nonlinear optical lattice is varied. This transition is associated with the existence of an unstable solution, which exhibits a shrinking (decaying) behavior for slightly overcritical (undercritical) variations in the number of atoms.
Resumo:
We report on the creation of three-vortex clusters in a (87)Rb Bose-Einstein condensate by oscillatory excitation of the condensate. This procedure can create vortices of both circulations, so that we are able to create several types of vortex clusters using the same mechanism. The three-vortex configurations are dominated by two types, namely, an equilateral-triangle arrangement and a linear arrangement. We interpret these most stable configurations respectively as three vortices with the same circulation and as a vortex-antivortex-vortex cluster. The linear configurations are very likely experimental signatures of predicted stationary vortex clusters.
Resumo:
We analyze the coherent formation of molecular Bose-Einstein condensate (BEC) from an atomic BEG, using a parametric field theory approach. We point out the transition between a quantum soliton regime, where atoms couple in a local way to a classical soliton domain, where a stable coupled-condensate soliton can form in three dimensions. This gives the possibility of an intense, stable atom-laser output. [S0031-9007(98)07283-4].
Resumo:
Interaction between collective monopole oscillations of a trapped Bose-Einstein condensate and thermal excitations is investigated by means of perturbation theory. We assume spherical symmetry to calculate the matrix elements by solving the linearized Gross-Pitaevskii equations. We use them to study the resonances of the condensate induced by temperature when an external perturbation of the trapping frequency is applied and to calculate the Landau damping of the oscillations.
Resumo:
Using variational and numerical solutions of the mean-field Gross-Pitaevskii equation for attractive interaction (with cubic or Kerr nonlinearity), we show that a stable bound state can appear in a Bose-Einstein condensate (BEC) in a localized exponentially screened radially symmetric harmonic potential well in two and three dimensions. We also consider an axially symmetric configuration with zero axial trap and a exponentially screened radial trap so that the resulting bound state can freely move along the axial direction like a soliton. The binding of the present states in shallow wells is mostly due to the nonlinear interaction with the trap playing a minor role. Hence, these BEC states are more suitable to study the effect of the nonlinear force on the dynamics. We illustrate the highly nonlinear nature of breathing oscillations of these states. Such bound states could be created in BECs and studied in the laboratory with present knowhow.
Resumo:
We suggest a pseudospectral method for solving the three-dimensional time-dependent Gross-Pitaevskii (GP) equation, and use it to study the resonance dynamics of a trapped Bose-Einstein condensate induced by a periodic variation in the atomic scattering length. When the frequency of oscillation of the scattering length is an even multiple of one of the trapping frequencies along the x, y or z direction, the corresponding size of the condensate executes resonant oscillation. Using the concept of the differentiation matrix, the partial-differential GP equation is reduced to a set of coupled ordinary differential equations, which is solved by a fourth-order adaptive step-size control Runge-Kutta method. The pseudospectral method is contrasted with the finite-difference method for the same problem, where the time evolution is performed by the Crank-Nicholson algorithm. The latter method is illustrated to be more suitable for a three-dimensional standing-wave optical-lattice trapping potential.
Resumo:
The Gross-Pitaevskii equation for a Bose-Einstein condensate confined in an elongated cigar-shaped trap is reduced to an effective system of nonlinear equations depending on only one space coordinate along the trap axis. The radial distribution of the condensate density and its radial velocity are approximated by Gaussian functions with real and imaginary exponents, respectively, with parameters depending on the axial coordinate and time. The effective one-dimensional system is applied to a description of the ground state of the condensate, to dark and bright solitons, to the sound and radial compression waves propagating in a dense condensate, and to weakly nonlinear waves in repulsive condensate. In the low-density limit our results reproduce the known formulas. In the high-density case our description of solitons goes beyond the standard approach based on the nonlinear Schrodinger equation. The dispersion relations for the sound and radial compression waves are obtained in a wide region of values of the condensate density. The Korteweg-de Vries equation for weakly nonlinear waves is derived and the existence of bright solitons on a constant background is predicted for a dense enough condensate with a repulsive interaction between the atoms.
Resumo:
We study the Bose-Einstein condensation of an interacting gas with attractive interaction confined in a harmonic trap using a semiclassical two-fluid mean-field model. The condensed state is described by the converged numerical solution of the Gross-Pitaevskii equation. By solving the system of coupled equations of this model iteratively we obtain the converged results for the temperature dependencies of the condensate fraction, chemical potential, and internal energy for the Bose-Einstein condensate of Li-7 atoms. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
The quantized vortex states of a weakly interacting Bose-Einstein condensate of atoms with attractive interatomic interaction in an axially symmetric harmonic oscillator trap are investigated using the numerical solution of the time-dependent Gross-Pitaevskii equation obtained by the semi-implicit Crank-Nicholson method. The collapse of the condensate is studied in the presence of deformed traps with the larger frequency along either the radial or the axial direction. The critical number of atoms for collapse is calculated as a function of the vortex quantum number L. The critical number increases with increasing angular momentum L of the cortex state but tends to saturate for large L.
Resumo:
We present the actual state of affairs and future perspectives in the study of a quantum system of a collection of positronium (Ps) atoms. The interaction of a Ps atom with other atoms and molecules and specially with another Ps atom is described in some detail as Ps-Ps interaction should play a crucial role in the dynamics of an assembly of Ps atoms. Using a simple model-exchange potential, we could describe the available experimental results of Ps scattering reasonably well. The present scenario of the observation of Ps2 molecule, Ps Bose-Einstein condensate (BEC) and the annihilation laser from a Ps BEC is presented. Possibilities of a Ps BEC formation via laser cooling of Ps atoms and via Ps formation in cavities are considered and difficulties with each procedure discussed (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
The properties of the localized states of a two-component Bose-Einstein condensate confined in a nonlinear periodic potential (nonlinear optical lattice) are investigated. We discuss the existence of different types of solitons and study their stability by means of analytical and numerical approaches. The symmetry properties of the localized states with respect to nonlinear optical lattices are also investigated. We show that nonlinear optical lattices allow the existence of bright soliton modes with equal symmetry in both components and bright localized modes of mixed symmetry type, as well as dark-bright bound states and bright modes on periodic backgrounds. In spite of the quasi-one-dimensional nature of the problem, the fundamental symmetric localized modes undergo a delocalizing transition when the strength of the nonlinear optical lattice is varied. This transition is associated with the existence of an unstable solution, which exhibits a shrinking (decaying) behavior for slightly overcritical (undercritical) variations in the number of atoms.