955 resultados para Boiler fly ash
Resumo:
Nowadays, the concrete production sector is challenged by attempts to minimize the usage of raw materials and energy consumption, as well as by environmental concerns. Therefore, it is necessary to choose better options, e.g. new technologies or materials with improved life-cycle performance. One solution for using resources in an efficient manner is to close the materials' loop through the recycling of materials that result either from the end-of-life of products or from being the by-product of an industrial process. It is well known that the production of Portland cement, one of the materials most used in the construction sector, has a significant contribution to the environmental impacts, mainly related with carbon dioxide emission. Therefore, the study and utilization of by-products or wastes usable as cement replacement in concrete can supply more sustainable options, provided that these type of concrete produced has same durability and equivalent quality properties as standard concrete. This work studied the environmental benefits of incorporating different percentages of two types of fly ashes that can be used in concrete as cement replacement. These ashes are waste products of power and heat production sectors using coal or biomass as fuels. The results showed that both ashes provide a benefit for the concrete production both in terms of environmental impact minimization and a better environmental performance through an increase in cement replacement. It is possible to verify that the incorporation of fly ashes is a sustainable option for cement substitution and a possible path to improve the environmental performance of the concrete industry.
Resumo:
The irregular disposal of coal combustion residues has adverse impacts on terrestrial ecosystems. Pioneer plants and soil invertebrates play an important role in the recovery of these areas. The goal of this study was to investigate the colonization patterns of terrestrial isopods (Oniscidea) in leaf litter of three spontaneous pioneer plants (grass - Poaceae, shrub - Euphorbiaceae, tree - Anarcadiaceae) at sites used for fly ash or boiler slag disposal. The experiment consisted of eight blocks (four per disposal site) of 12 litter bags each (four per plant species) that were randomly removed after 6, 35, 70 or 140 days of field exposure. Three isopod species were found in the litter bags: Atlantoscia floridana (van Name, 1940) (Philosciidae; n = 116), Benthana taeniata Araujo & Buckup, 1994 (Philosciidae; n = 817) and Balloniscus sellowii (Brandt, 1833) (Balloniscidae; n = 48). The isopods colonized the three leaf-litter species equally during the exposure period. However, the pattern of leaf-litter colonization by these species suggests a conflict of objectives between high quality food and shelter availability. The occurrence of A. floridana and the abundance and fecundity of B. taeniata were influenced by the residue type, indicating that the isopods have different degrees of tolerance to the characteristics of the studied sites. Considering that terrestrial isopods are abundant detritivores and stimulate the humus-forming processes, it is suggested that they could have an indirect influence on the soil restoration of this area.
Resumo:
Environmentally harmful consequences of fossil fuel utilisation andthe landfilling of wastes have increased the interest among the energy producers to consider the use of alternative fuels like wood fuels and Refuse-Derived Fuels, RDFs. The fluidised bed technology that allows the flexible use of a variety of different fuels is commonly used at small- and medium-sized power plants ofmunicipalities and industry in Finland. Since there is only one mass-burn plantcurrently in operation in the country and no intention to build new ones, the co-firing of pre-processed wastes in fluidised bed boilers has become the most generally applied waste-to-energy concept in Finland. The recently validated EU Directive on Incineration of Wastes aims to mitigate environmentally harmful pollutants of waste incineration and co-incineration of wastes with conventional fuels. Apart from gaseous flue gas pollutants and dust, the emissions of toxic tracemetals are limited. The implementation of the Directive's restrictions in the Finnish legislation is assumed to limit the co-firing of waste fuels, due to the insufficient reduction of the regulated air pollutants in the existing flue gas cleaning devices. Trace metals emission formation and reduction in the ESP, the condensing wet scrubber, the fabric filter, and the humidification reactor were studied, experimentally, in full- and pilot-scale combustors utilising the bubbling fluidised bed technology, and, theoretically, by means of reactor model calculations. The core of the model is a thermodynamic equilibrium analysis. The experiments were carried out with wood chips, sawdust, and peat, and their refuse-derived fuel, RDF, blends. In all, ten different fuels or fuel blends were tested. Relatively high concentrations of trace metals in RDFs compared to the concentrations of these metals in wood fuels increased the trace metal concentrations in the flue gas after the boiler ten- to hundred-folds, when RDF was co-fired with sawdust in a full-scale BFB boiler. In the case of peat, lesser increase in trace metal concentrations was observed, due to the higher initial trace metal concentrations of peat compared to sawdust. Despite the high removal rate of most of the trace metals in the ESP, the Directive emission limits for trace metals were exceeded in each of the RDF co-firing tests. The dominat trace metals in fluegas after the ESP were Cu, Pb and Mn. In the condensing wet scrubber, the flue gas trace metal emissions were reduced below the Directive emission limits, whenRDF pellet was used as a co-firing fuel together with sawdust and peat. High chlorine content of the RDFs enhanced the mercuric chloride formation and hence the mercury removal in the ESP and scrubber. Mercury emissions were lower than theDirective emission limit for total Hg, 0.05 mg/Nm3, in all full-scale co-firingtests already in the flue gas after the ESP. The pilot-scale experiments with aBFB combustor equipped with a fabric filter revealed that the fabric filter alone is able to reduce the trace metal concentrations, including mercury, in the flue gas during the RDF co-firing approximately to the same level as they are during the wood chip firing. Lower trace metal emissions than the Directive limits were easily reached even with a 40% thermal share of RDF co-firing with sawdust.Enrichment of trace metals in the submicron fly ash particle fraction because of RDF co-firing was not observed in the test runs where sawdust was used as the main fuel. The combustion of RDF pellets with peat caused an enrichment of As, Cd, Co, Pb, Sb, and V in the submicron particle mode. Accumulation and release oftrace metals in the bed material was examined by means of a bed material analysis, mass balance calculations and a reactor model. Lead, zinc and copper were found to have a tendency to be accumulated in the bed material but also to have a tendency to be released from the bed material into the combustion gases, if the combustion conditions were changed. The concentration of the trace metal in the combustion gases of the bubbling fluidised bed boiler was found to be a summary of trace metal fluxes from three main sources. They were (1) the trace metal flux from the burning fuel particle (2) the trace metal flux from the ash in the bed, and (3) the trace metal flux from the active alkali metal layer on the sand (and ash) particles in the bed. The amount of chlorine in the system, the combustion temperature, the fuel ash composition and the saturation state of the bed material in regard to trace metals were discovered to be key factors affecting therelease process. During the co-firing of waste fuels with variable amounts of e.g. ash and chlorine, it is extremely important to consider the possible ongoingaccumulation and/or release of the trace metals in the bed, when determining the flue gas trace metal emissions. If the state of the combustion process in regard to trace metals accumulation and/or release in the bed material is not known,it may happen that emissions from the bed material rather than the combustion of the fuel in question are measured and reported.
Resumo:
Leijukerroskattiloissa rikinpoisto tapahtuu useimmiten käyttämällä primäärisiä rikinpoistomenetelmiä. Tämä tarkoittaa jonkin rikkiä sitovan lisäaineen, yleensä kalkkikiven, syöttämistä tulipesään. Tämä menetelmä soveltuu hyvin leijukerrospolttoon sen edullisuuden ja tehokkuuden takia.Tulevaisuudessa tullaan kuitenkin tiukentamaan voimalaitosten rikkidioksidipäästöjen rajoja. Tällöin myös vähärikkisiä polttoaineita käyttävien voimalaitosten tulee alentaa rikkipäästöjään. Nykyisiä menetelmiä käyttäen nousisivat kustannukset korkeaksi saavutettavaan hyötyyn nähden. Tämän takia tullaan tulevaisuudessa tarvitsemaan erilaisia rikinpoiston tehostamiskeinoja.Tämän työn tarkoituksena on selvittää rikinpoistoon ja sen tehokkuuteen vaikuttavia tekijöitä sekä tutkia erilaisia keinoja rikinpoiston tehostamiseksi. Kirjallisuusosassa keskitytään selvittämään nykyiset käytössä tai tutkimusasteella olevat keinot rikinpoiston tehostamiseksi. Kokeellisessa osuudessa keskitytään lentotuhkan kierrättämisen hyödyntämiseen rikinpoistossa. Tehtävissä kokeissa tavoitteena oli rikinpoistoasteen parantaminen sekä puhtaan kalkkikiven kulutuksen vähentäminen käyttämällä hyväksi lentotuhkan sisältämää reagoimatonta kalsiumoksidia.
Resumo:
Työn tavoitteena oli tutkia vaikuttaako puupolttoaineen lisääminen turpeen joukkoon leijukerroskattilan hiukkaspäästöihin tai sähkösuodattimen erotusasteeseen. Työn teoriaosassa selvitettiin hiukkaspäästöjen muodostumista leijukerrospoltossa ja vertailtiin eri polttotekniikoiden hiukkaspäästöjä. Lisäksi esiteltiin erilaisia hiukkasten erottamiseen soveltuvia erotuslaitteita. Tarkastelussa keskityttiin sähkösuodattimeen, joka on yleisin hiukkasten erottamiseen käytettävä erotuslaite. Työn kokeellinen osa suoritettiin turvetta ja puuta polttavalla kuplivalla leijukerroskattilalla. Kokeellisessa osassa tutkittiin vaikuttaako puun lisäys syntyvien hiukkasten kokojakaumiin, sähkösuodattimen jälkeiseen kokonaishiukkaspäästöön tai sähkösuodattimen erotusasteeseen. Kokeet suoritettiin sekä pelkkänä turpeenpolttona (2 koetta), että kahdella eri puu/turve-polttoainesuhteella. Kokojakaumamittaukset suoritettiin lisäksi kahdella eri menetelmällä. Kokojakaumamittausten perusteella todettiin puun lisäyksen kasvattavan pienhiukkasten muodostumista. Pienhiukkasten osuus kasvoi sekapolton myötä myös sähkösuodattimen jälkeen. Sekapoltolla ei sen sijaan ollut selvää vaikutusta kokonaishiukkaspäästöön tai sähkösuodattimen erotusasteeseen.
Polttoaineseoksen ja prosessiolosuhteiden vaikutus kerrosleijukattilan tulistinalueen likaantumiseen
Resumo:
Työn tavoitteena oli löytää yhteys kerrosleijukattilaan syötetyn polttoaineseoksen sekä kattilan likaantumisen välille. Tulistinalueen likaantumista tutkittiin kahden kerrostumasondin avulla 28 päivää kestäneellä mittausjaksolla. Mittausten aikana otettiin näytteitä polttoaineseoksesta, lentotuhkasta sekä nuohouksen aikaisesta tuhkavirrasta. Mittausjakson jälkeen myös sondien tuhkakerrostumien pitoisuudet määritettiin. Mittausjakson aikana sondien jättöpinnoille muodostui tuhkakerrostumaa, joka voitiin poistaa nuohouksella, kun taas tulopinnalle syntyi pysyvää kerrostumaa. Nuohouksella irtoavan tuhkakerrostuman havaittiin sisältävän suuremmat pitoisuudet piitä, alumiinia, natriumia ja kaliumia kuin kattilan läpi jatkuvasti kulkevan lentotuhkan. Tuhkakerrostuma, jota ei nuohouksella saatu poistettua, sisälsi enemmän natriumia, rikkiä, kaliumia ja lyijyä kuin muut tuhkanäytteet. Polttoaineista turpeella oli merkittävin vaikutus likaantumiseen. Turpeen osuuden ollessa suurimmillaan jäivät jättöpinnan tuhkakerrostuman lämpövastukset pienemmiksi kuin muulloin eli lyhytaikaista kerrostumaa syntyi tällöin vähemmän. Pysyvän kerrostuman kasvu hidastui, kun turpeen osuus oli suuri, ja jopa pysähtyi, kun turpeen osuus oli 42-51 %. Prosessiolosuhteista tutkittiin kattilan kuorman vaikutusta likaantumiseen. Havaittiin, että ajettaessa kattilaa isommilla kuormilla, syntyi lyhytaikaista kerrostumaa vähemmän kuin muulloin.
Resumo:
Energiantuotannossa syntyvä tuhka voi olla laadultaan hyvin vaihtelevaa ja laadunvaihtelulle on haastavaa löytää yksiselitteistä syy-seuraussuhdetta. Ympäristönsuojelulainsäädäntö ja taloudelliset intressit ohjaavat tuhkantuottajia etsimään tuhkalle sopivia hyötykäyttökohteita, ja sen vuoksi tuhkan laatuun ja hyötykäyttökelpoisuuteen vaikuttavia tekijöitä on tarpeen selvittää. Tässä diplomityössä on tutkittu pienissä, alle 50 MW:n polttolaitoksissa syntyvää tuhkaa. Tavoitteena oli selvittää, kuinka tuhkan hyötykäyttökelpoisuuteen voidaan vaikuttaa. Tutkimuksen kohteena oli polttoainekoostumuksen, poltto-olosuhteiden ja tuhkan jälkikäsittelyn vaikutus tuhkassa olevien haitta-aineiden pitoisuuksiin ja liukoisuuksin. Työhön sisältyi myös aiemmin tehtyjen tuhka-analyysien tarkastelu sekä tuhkakokeet kahdella kohderyhmään kuuluvalla laitoksella. Työssä todettiin lentotuhkan haitta-ainepitoisuuksien ja -liukoisuuksien olevan keskimäärin korkeampia kuin pohjatuhkan vastaavien, ja että tyypillisesti arinakattilan tuhkien haitta-aineet ylittävät useammin hyötykäyttökelpoisuuden raja-arvoja kuin kuplaleijupetikattilan tuhkien. Lisäksi havaittiin metsätähdehaketuhkan kelpaavan useammin hyötykäyttöön kuin rankahaketuhkan.
Resumo:
Ash-based polymer composites are assuming increasing importance because of the pollutant potential, fine particle size, and low price of ash. Fly ash and rice husk ash are two prominent ash materials on which some investigations have already been done for potential use in polymer composites. This article highlights the results of a study on the use of wood ash in HDPE. Wood ash is mainly a mixture of various metallic compounds and some silica. Here, the characterization of wood ash has been done with the help of XRD, ICPAES, light scattering based particle size analysis, FTIR, and SEM. The results show that wood ash particle size has an average value of 293 nm, much lower than other categories of ash. When blended with HDPE in the presence of a compatibilizer, wood ash gives rise to vastly improved mechanical properties over that of the base polymer. The results prove that wood ash is a valuable reinforcing material for HDPE and the environmental pollution due to wood ash can be solved in a most profitable way by this technique.
Resumo:
This paper presents a study of the pozzolanic reaction kinetics between calcium hydroxide and a mixture of sugar cane bagasse with 20 and 30% of clay, burned at 800 and 1000 degrees C (SCBCA) by electrical conductivity measurements. A kinetic-diffusive model produced in previous studies by some of the authors was used. The model was fitted to the experimental data, which allowed the computation of the kinetic parameters of the pozzolanic reaction (reaction rate constant and free energy of activation) that rigorously characterised the pozzolanic activity of the materials. The results show that SCBCA demonstrated reactivity and good pozzolanic qualities in the range 800-1000 degrees C.
Resumo:
The use of fly ash (FA) as an admixture to concrete is broadly extended for two main reasons: the reduction of costs that supposes the substitution of cement and the micro structural changes motivated by the mineral admixture. Regarding this second point, there is a consensus that considers that the ash generates a more compact concrete and a reduction in the size of the pore. However, the measure in which this contributes to the pozzolanic activity or as filler is not well defined. There is also no justification to the influence of the physical parameters, fineness of the grain and free water, in its behavior. This work studies the use of FA as a partial substitute of the cement in concretes of different workability (dry and wet) and the influence in the reactivity of the ash. The concrete of dry consistency which serves as reference uses a cement dose of 250 Kg/m 3 and the concrete of fluid consistency utilized a dose of cement of 350 Kg/m 3 . Two trademark of Portland Cement Type 1 were used. The first reached the resistant class for its fineness of grain and the second one for its composition. Moreover, three doses of FA have been used, and the water/binder ratio was constant in all the mixtures. We have studied the mechanical properties and the micro-structure of the concretes by means of compressive strength tests, mercury intrusion porosimetry (MIP) and thermal analysis (TA). The results of compressive strength tests allow us to observe that concrete mixtures with cements of the same classification and similar dosage of binder do not present the same mechanical behavior. These results show that the effective water/binder ratio has a major role in the development of the mechanical properties of concrete. The study of different dosages using TA, thermo-gravimetry and differential thermal analysis, revealed that the portlandite content is not restrictive in any of the dosages studied. Again, this proves that the rheology of the material influences the reaction rate and content of hydrated cement products. We conclude that the available free water is determinant in the efficiency of pozzolanic reaction. It is so that in accordance to the availability of free water, the ashes can react as an active admixture or simply change the porous distribution. The MIP shows concretes that do not exhibit significant changes in their mechanical behavior, but have suffered significant variation in their porous structure
Resumo:
"U.S. Atomic Energy Commission Contract AT(29-1)-1106."
Resumo:
Fly ash was modified by hydrothermal treatment using NaOH solutions under various conditions for zeolite synthesis. The XRD patterns are presented. The results indicated that the samples obtained after treatment are much different. The XRD profiles revealed a number of new reflexes, suggesting a phase transformation probably occurred. Both heat treatment and chemical treatment increased the surface area and pore volume. It was found that zeolite P would be formed at the conditions of higher NaOH concentration and temperature. The treated fly ash was tested for adsorption of heavy metal ions and dyes in aqueous solution. It was shown that fly ash and the modified forms could effectively absorb heavy metals and methylene blue but not effectively adsorb rhodamine B. Modifying fly ash with NaOH solution would significantly enhance the adsorption capacity depending on the treatment temperature, time, and base concentration. The adsorption capacity of methylene blue would increases with pH of the dye solution and the sorption capacity of FA-NaOH could reach 5 x 10(-5) mol/g. The adsorption isotherm could be described by the Langmuir and Freundlich isotherm equations. Removal of copper and nickel ions could also be achieved on those treated fly ash. The removal efficiency for copper and nickel ions could be from 30% to 90% depending on the initial concentrations. The increase in adsorption temperature will enhance the adsorption efficiency for both heavy metals. The pseudo second-order kinetics would be better for fitting the dynamic adsorption of Cu and Ni ions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Abstract : Wastepaper sludge ash (WSA) is generated by a cogeneration station by burning wastepaper sludge. It mainly consists of amorphous aluminosilicate phase, anhydrite, gehlenite, calcite, lime, C2S, C3A, quartz, anorthite, traces of mayenite. Because of its free lime content (~10%), WSA suspension has a high pH (13). Previous researchers have found that the WSA composition has poor robustness and the variations lead to some unsoundness for Portland cement (PC) blended WSA concrete. This thesis focused on the use of WSA in different types of concrete mixes to avoid the deleterious effect of the expansion due to the WSA hydration. As a result, WSA were used in making alkali-activated materials (AAMs) as a precursor source and as a potential activator in consideration of its amorphous content and the high alkaline nature. Moreover, the autogenous shrinkage behavior of PC concrete at low w/b ratio was used in order to compensate the expansion effect due to WSA. The concrete properties as well as the volume change were investigated for the modified WSA blended concrete. The reaction mechanism and microstructure of newly formed binder were evaluated by X-ray diffraction (XRD), calorimetry, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). When WSA was used as precursor, the results showed incompatible reaction between WSA and alkaline solution. The mixtures were not workable and provided very low compressive strength no matter what kinds of chemical activators were used. This was due to the metallic aluminum in WSA, which releases abundant hydrogen gas when WSA reacts with strong alkaline solution. Besides, the results of this thesis showed that WSA can activate the glassy phase contained in slag, glass powder (GP) and class F fly ash (FFA) with an optimum blended ratio of 50:50. The WSA/slag (mass ratio of 50:50) mortar (w/b of 0.47) attained 46 MPa at 28 days without heat curing assistance. A significant fast setting was noticed for the WSA-activated binder due to the C3A phase, free lime and metallic aluminum contained in the WSA. Adding 5% of gypsum can delay the fast setting, but this greatly increased the potential risk of intern sulfate attack. The XRD, TGA and calorimetry analyses demonstrated the formation of ettringite, C-S-H, portlandite, hydrogarnet and calcium carboaluminate in the hydrated binder. The mechanical performance of different binder was closely related to the microstructure of corresponding binder which was proved by the SEM observation. The hydrated WSA/slag and WSA/FFA binder formed a C-A-S-H type of gel with lower Ca/Si ratio (0.47~1.6). A hybrid gel (i.e. C-N-A-S-H) was observed for the WSA/GP binder with a very low Ca/Si ratio (0.26) and Na/Si ratio (0.03). The SEM/EDX analyses displayed the formation of expansive gel (ettringite and thaumasite) in the gypsum added WSA/slag concrete. The gradual emission of hydrogen gas due to the reaction of WSA with alkaline environment significantly increased the porosity and degraded the microstructure of hydrated matrix after the setting. In the last phase of this research WSA-PC blended binder was tailored to form a high autogenous shrinkage concrete in order to compensate the initial expansion. Different binders were proportioned with PC, WSA, silica fume or slag. The microstructure and mechanical properties of concrete can be improved by decreasing w/b ratios and by incorporating silica fume or slag. The 28-day compressive strength of WSA-blended concrete was above 22 MPa and reached 45 MPa when silica fume was added. The PC concrete incorporating silica fume or slag tended to develop higher autogenous shrinkage at low w/b ratios, and thus the ternary binder with the addition of WSA inhibited the long term shrinkage due to the initial expansion property to WSA. In the restrained shrinkage test, the concrete ring incorporating the ternary binder (PC/WSA/slag) revealed negligible potential to cracking up to 96 days as a result of the offset effect by WSA expansion. The WSA blended regular concrete could be produced for potential applications with reduced expansion, good mechanical property and lower permeability.
Resumo:
At present, the cement industry generates approximately 5% of the world`s anthropogenic CO(2) emissions. This share is expected to increase since demand for cement based products is forecast to multiply by a factor of 2.5 within the next 40 years and the traditional strategies to mitigate emissions, focused on the production of cement, will not be capable of compensating such growth. Therefore, additional mitigation strategies are needed, including an increase in the efficiency of cement use. This paper proposes indicators for measuring cement use efficiency, presents a benchmark based on literature data and discusses potential gains in efficiency. The binder intensity (bi) index measures the amount of binder (kg m(-3)) necessary to deliver 1 MPa of mechanical strength, and consequently express the efficiency of using binder materials. The CO(2) intensity index (ci) allows estimating the global warming potential of concrete formulations. Research benchmarks show that bi similar to 5 kg m(-3) MPa(-1) are feasible and have already been achieved for concretes >50 MPa. However, concretes with lower compressive strengths have binder intensities varying between 10 and 20 kg m(-3) MPa(-1). These values can be a result of the minimum cement content established in many standards and reveal a significant potential for performance gains. In addition, combinations of low bi and ci are shown to be feasible. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Percolative fragmentation was confirmed to occur during gasification of three microporous coal chars. Indirect evidence obtained by the variation of electrical resistivity (ER) with conversion was supported by direct observation of numerous fragments during gasification. The resistivity increases slowly at low conversions and then sharply after a certain conversion value, which is a typical percolation phenomenon suggesting the occurrence of internal fragmentation at high conversion. Two percolation models are applied to interpret the experimental data and determine the percolation threshold. A percolation threshold of 0.02-0.07 was found, corresponding to a critical conversion of 92-96% for fragmentation. The electrical resistivity variation at high conversions is found to be very sensitive to diffusional effects during gasification. Partially burnt samples with a narrow initial particle size range were also observed microscopically, and found to yield a large number of small fragments even when the particles showed no disintegration and chemical control prevailed. It is proposed that this is due to the separation of isolated clusters from the particle surface. The particle size distribution of the fragments was essentially independent of the reaction conditions and the char type, and supported the prediction by percolation theory that the number fraction distribution varies linearly with mass in a log-log plot. The results imply that perimeter fragmentation would occur in practical combustion systems in which the reactions are strongly diffusion affected.