941 resultados para Bivariate Hermite polynomials
Resumo:
The Logit-Logistic (LL), Johnson's SB, and the Beta (GBD) are flexible four-parameter probability distribution models in terms of the (skewness-kurtosis) region covered, and each has been used for modeling tree diameter distributions in forest stands. This article compares bivariate forms of these models in terms of their adequacy in representing empirical diameter-height distributions from 102 sample plots. Four bivariate models are compared: SBB, the natural, well-known, and much-used bivariate generalization of SB; the bivariate distributions with LL, SB, and Beta as marginals, constructed using Plackett's method (LL-2P, etc.). All models are fitted using maximum likelihood, and their goodness-of-fits are compared using minus log-likelihood (equivalent to Akaike's Information Criterion, the AIC). The performance ranking in this case study was SBB, LL-2P, GBD-2P, and SB-2P
Resumo:
We study the classes of homogeneous polynomials on a Banach space with unconditional Schauder basis that have unconditionally convergent monomial expansions relative to this basis. We extend some results of Matos, and we show that the homogeneous polynomials with unconditionally convergent expansions coincide with the polynomials that are regular with respect to the Banach lattices structure of the domain.
Resumo:
Let H be a (real or complex) Hilbert space. Using spectral theory and properties of the Schatten–Von Neumann operators, we prove that every symmetric tensor of unit norm in HoH is an infinite absolute convex combination of points of the form xox with x in the unit sphere of the Hilbert space. We use this to obtain explicit characterizations of the smooth points of the unit ball of HoH .
Resumo:
The classification of protein structures is an important and still outstanding problem. The purpose of this paper is threefold. First, we utilize a relation between the Tutte and homfly polynomial to show that the Alexander-Conway polynomial can be algorithmically computed for a given planar graph. Second, as special cases of planar graphs, we use polymer graphs of protein structures. More precisely, we use three building blocks of the three-dimensional protein structure-alpha-helix, antiparallel beta-sheet, and parallel beta-sheet-and calculate, for their corresponding polymer graphs, the Tutte polynomials analytically by providing recurrence equations for all three secondary structure elements. Third, we present numerical results comparing the results from our analytical calculations with the numerical results of our algorithm-not only to test consistency, but also to demonstrate that all assigned polynomials are unique labels of the secondary structure elements. This paves the way for an automatic classification of protein structures.
Resumo:
Background: Heckman-type selection models have been used to control HIV prevalence estimates for selection bias when participation in HIV testing and HIV status are associated after controlling for observed variables. These models typically rely on the strong assumption that the error terms in the participation and the outcome equations that comprise the model are distributed as bivariate normal.
Methods: We introduce a novel approach for relaxing the bivariate normality assumption in selection models using copula functions. We apply this method to estimating HIV prevalence and new confidence intervals (CI) in the 2007 Zambia Demographic and Health Survey (DHS) by using interviewer identity as the selection variable that predicts participation (consent to test) but not the outcome (HIV status).
Results: We show in a simulation study that selection models can generate biased results when the bivariate normality assumption is violated. In the 2007 Zambia DHS, HIV prevalence estimates are similar irrespective of the structure of the association assumed between participation and outcome. For men, we estimate a population HIV prevalence of 21% (95% CI = 16%–25%) compared with 12% (11%–13%) among those who consented to be tested; for women, the corresponding figures are 19% (13%–24%) and 16% (15%–17%).
Conclusions: Copula approaches to Heckman-type selection models are a useful addition to the methodological toolkit of HIV epidemiology and of epidemiology in general. We develop the use of this approach to systematically evaluate the robustness of HIV prevalence estimates based on selection models, both empirically and in a simulation study.