920 resultados para Bismuth-doped


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present some result on sol-gel derived silica-hafnia systems. In particular we focus on fabrication, morphological and spectroscopic assessment of Er(3+)-activated thin films. Two examples of silica-hafnia-derived waveguiding glass ceramics, prepared by top-down and bottom-up techniques are reported, and the main optical properties are discussed. Finally, some properties of activated microspherical resonators, having a silica core, obtained by melting the end of a telecom fiber, coated with an Er(3+)-doped 70SiO(2)-30HfO(2) film, are presented. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N,N-Dimethyl-pyrrolidinium iodide, and the effect of doping with LiI, has been investigated using DSC, NMR, and impedance spectroscopy. It was found that the addition of a small amount of LiI enhances the ionic conductivity by LIP to 3 orders of magnitude for this ionic solid. Furthermore, a slight decrease in phase transition onset temperatures, as well as the appearance of a superimposed narrow line in the H-1 NMR spectra with dopant, suggest that the LiI facilitates the mobility of the matrix material, possibly by the introduction of vacancies within the lattice. Li-7 NMR line width measurements reveal a narrow Li line width, decreasing in width and increasing in intensity with temperature, indicating mobile Li ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by the unconventional properties and rich phase diagram of NaxCoO2 we consider the electronic and magnetic properties of a two-dimensional Hubbard model on an isotropic triangular lattice doped with electrons away from half-filling. Dynamical mean-field theory (DMFT) calculations predict that for negative intersite hopping amplitudes (t < 0) and an on-site Coulomb repulsion, U, comparable to the bandwidth, the system displays properties typical of a weakly correlated metal. In contrast, for t > 0 a large enhancement of the effective mass, itinerant ferromagnetism, and a metallic phase with a Curie-Weiss magnetic susceptibility are found in a broad electron doping range. The different behavior encountered is a consequence of the larger noninteracting density of states (DOS) at the Fermi level for t > 0 than for t < 0, which effectively enhances the mass and the scattering amplitude of the quasiparticles. The shape of the DOS is crucial for the occurrence of ferromagnetism as for t > 0 the energy cost of polarizing the system is much smaller than for t < 0. Our observation of Nagaoka ferromagnetism is consistent with the A-type antiferromagnetism (i.e., ferromagnetic layers stacked antiferromagnetically) observed in neutron scattering experiments on NaxCoO2. The transport and magnetic properties measured in NaxCoO2 are consistent with DMFT predictions of a metal close to the Mott insulator and we discuss the role of Na ordering in driving the system towards the Mott transition. We propose that the Curie-Weiss metal phase observed in NaxCoO2 is a consequence of the crossover from a bad metal with incoherent quasiparticles at temperatures T > T-* and Fermi liquid behavior with enhanced parameters below T-*, where T-* is a low energy coherence scale induced by strong local Coulomb electron correlations. Our analysis also shows that the one band Hubbard model on a triangular lattice is not enough to describe the unusual properties of NaxCoO2 and is used to identify the simplest relevant model that captures the essential physics in NaxCoO2. We propose a model which allows for the Na ordering phenomena observed in the system which, we propose, drives the system close to the Mott insulating phase even at large dopings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variable temperature electron paramagnetic resonance spectra of tris(ethylenediamine)zinc(II) dinitrate single crystals doped with NI(II) have been measured. The host crystal undergoes a trigonal to monoclinic phase transition at 146 K. Above the transition temperature the zero field splitting tensor is axially symmetric with D = -0.831 cm(-1) and below it becomes rhombic with D = -0.785 cm(-1), E = -0.088 cm(-1). The low temperature spectrum is characterised by the pattern repeating every 60 degrees when the crystal is rotated about the high temperature c axis. The analysis shows that the Zn(II) site retains a C-2 symmetry axis and that the distortion away from the D-3 site symmetry observed for high temperatures is small, the principal axes being tilted by 2.6 degrees. This implies that the phase transition involves the flipping of the C-C backbone in one of the ethylenediamine ligands of the complex, resulting in a A delta delta delta to Lambda delta delta lambda type conformational change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new addition to the family of single-molecule magnets is reported: an Fete cage stabilized with benzoate and pyridonate ligands. Monte Carlo methods have been used to derive exchange parameters within the cage, and hence model susceptibility behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature dependence of the X- and Q-band EPR spectra of Cs-2[Zn(H2O)(6)](ZrF6)(2) containing similar to1% Cu2+ is reported. All three molecular g-values vary with temperature, and their behavior is interpreted using a model in which the potential surface of the Jahn-Teller distorted Cu(H2O)(6)(2+) ion is perturbed by an orthorhombic strain induced by interactions with the surrounding lattice. The strain parameters are significantly smaller than those reported previously for the Cu(H2O)(6)(2+) ion in similar lattices. The temperature dependence of the two higher g-values suggests that in the present compound the lattice interactions change slightly with temperature. The crystal structure of the Cs-2[Zn(H2O)(6)](ZrF6)(2) host is reported, and the geometry of the Zn(H2O)(6)(2+) ion is correlated with lattice strain parameters derived from the EPR spectrum of the guest Cu2+ complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Co-sintering aid has been added to Ce1.9Gd0.1O1.95 (CGO) by treating a commercial powder with Co(NO3)(2) (COCGO), X-ray diffraction (XRD) measurements of lattice parameter indicated that the Co was located on the CGO particle surface after calcination at 650 degreesC. After heat treatment at temperatures above 650 degreesC, the room temperature lattice parameter of CGO was found to increase, indicating redistribution of the Gd. Compared to CGO, the lattice parameter of CGO + 2 cation% Co (2CoCGO) was lower for a given temperature (650-1100 degreesC), A.C. impedance revealed that the lattice conductivity of 2CoCGO was enhanced when densified at lower temperatures, Transmission electron microscopy (TEM) showed that, even after sintering for 4 h at 980 degreesC, most of the Co was located at grain boundaries. (C) 2002 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of crystallographic index termed the effective index is suggested and applied to the design of ceria (CeO2)-based electrolytes to maximize oxide ionic conductivity. The suggested index considers the fluorite structure, and combines the expected oxygen vacancy level with the ionic radius mismatch between host and dopant cations. Using this approach, oxide ionic conductivity of Sm- or La-doped CeO2-based system has been optimized and tested under operating conditions of a solid oxide fuel cell. In the observation of microstructure in atomic scale, both Sm-doped CeO2 and La-doped CeO2 electrolytes had large micro-domains over 10 nm in the lattice. On the other hand, Sm or La and alkaline earth co-doped CeO2-based electrolytes with high effective index had small micro-domains around 1-3 nm in the microstructure. The large micro-domain would prevent oxide ion from passing through the lattice. Therefore, it is concluded that the improvement of ionic conductivity is reflected in changes of microstructure in atomic scale. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho apresentado no I Simpósio Mineiro de Ciências dos Materiais, Ouro Preto, Novembro de 2001.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxide based diluted magnetic semiconductor (DMS) materials have been a subject of increasing interest due to reports of room temperature ferromagnetism in several systems and their potential use in the development of spintronic devices. However, concerns on the stability of the magnetic properties of different DMS systems have been raised. Their magnetic moment is often unstable, vanishing with a characteristic decay time of weeks or months, which precludes the development of real applications. This paper reports on the ferromagnetic properties of two-year-aged Ti1-xCoxO2-δ reduced anatase nanopowders with different Co contents (0.03≤x≤0.10). Aged samples retain rather high values of magnetization, remanence and coercivity which provide strong evidence for a quite preserved long-range ferromagnetic order. In what concern Co segregation, some degree of metastability of the diluted Co doped anatase structure could be inferred in the case of the sample with the higher Co content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the discovery of ferromagnetism well above room temperature in the Co-doped TiO2 system, diluted magnetic semiconductors based on TiO2 doped with transition metals have generated great interest because of their potential use in the development of spintronic devices. The purpose of this paper is to report on a new and swift chemical route to synthesise highly stable anatase single-phase Co- and Fe-doped TiO2 nanoparticles, with dopant concentrations of up to 10 at.-% and grain sizes that range between 20 and 30 nm. Complementary structural, microstructural and chemical analyses of the different nanopowders synthesised strongly support the hypothesis that a homogeneous distribution of the dopant element in the substitutional sites of the anatase structure has been achieved. Moreover, UV/Vis diffuse reflectance spectra of powder samples show redshifts to lower energies and decreasing bandgap energies with increasing Co or Fe concentration, which is consistent with n-type doping of the TiO2 anatase matrix. Films of Co-doped TiO2 were successfully deposited onto Si (100) substrates by the dip-coating method, with suspensions of Ti1-xCOxO2 nanoparticles in ethylene glycol. ((C)Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter reports on the magnetic properties of Ti(1-x)Co(x)O(2) anatase phase nanopowders with different Co contents. It is shown that oxygen vacancies play an important role in promoting long-range ferromagnetic order in the material studied in addition to the transition-metal doping. Furthermore, the results allow ruling out the premise of a strict connection between Co clustering and the ferromagnetism observed in the Co:TiO(2) anatase system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of TiO2 were doped with Au by ion implantation and in situ during the deposition. The films were grown by reactive magnetron sputtering and deposited in silicon and glass substrates at a temperature around 150 degrees C. The undoped films were implanted with Au fiuences in the range of 5 x 10(15) Au/cm(2)-1 x 10(17) Au/cm(2) with a energy of 150 keV. At a fluence of 5 x 10(16) Au/cm(2) the formation of Au nanoclusters in the films is observed during the implantation at room temperature. The clustering process starts to occur during the implantation where XRD estimates the presence of 3-5 nm precipitates. After annealing in a reducing atmosphere, the small precipitates coalesce into larger ones following an Ostwald ripening mechanism. In situ XRD studies reveal that Au atoms start to coalesce at 350 degrees C, reaching the precipitates dimensions larger than 40 nm at 600 degrees C. Annealing above 700 degrees C promotes drastic changes in the Au profile of in situ doped films with the formation of two Au rich regions at the interface and surface respectively. The optical properties reveal the presence of a broad band centered at 550 nm related to the plasmon resonance of gold particles visible in AFM maps. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports on the structural, electronic, and optical properties of boron-doped hydrogenated nanocrystalline silicon (nc-Si: H) thin films. The films were deposited by plasma-enhanced chemical vapour deposition (PECVD) at a substrate temperature of 150 degrees C. Crystalline volume fraction and dark conductivity of the films were determined as a function of trimethylboron-to-silane flow ratio. Optical constants of doped and undoped nc-Si: H were obtained from transmission and reflection spectra. By employing p(+) nc-Si: H as a window layer combined with a p' a-SiC buffer layer, a-Si: H-based p-p'-i-n solar cells on ZnO:Al-coated glass substrates were fabricated. Device characteristics were obtained from current-voltage and spectral-response measurements. (C) 2011 Elsevier B. V. All rights reserved.