961 resultados para Bismuth glasses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Element 115 is expected to be in group V-a of the periodic table and have most stable oxidation states of I and III. The oxidation state of I, which plays a minor role in bismuth chemistry, should be a major factor in 115 chemistry. This change will arise because of the large relativistic splitting of the spherically symmetric 7p_l/2 shell from the 7P_3/2 shell. Element 115 will therefore have a single 7p_3/2 electron outside a 7p^2_1/2 closed shell. The magnitude of the first ionization energy and ionic radius suggest a chemistry similar to Tl^+. Similar considerations suggest that 115^3+ will have a chemistry similar to Bi^3+. Hydrolysis will therefore be easy and relatively strongly complexing anions of strong acids will be needed in general to effect studies of complexation chemistry. Some other properties of 115 predicted are as follows: ionization potentials I 5.2 eV, II 18.1 eV, III 27.4 eV, IV 48.5 eV, 0 \rightarrow 5^+ 159 eV; heat of sublimation, 34 kcal (g-atom)^-1; atomic radius, 2.0 A; ionic radius, 115^+ 1.5 A, 115^3+ 1.0 A; entropy, 16 cal deg^-1 (g-atom)^-l (25°); standard electrode potential 115^+ |115, -1.5 V; melting and boiling points are similar to element 113.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At CoDaWork'03 we presented work on the analysis of archaeological glass composi- tional data. Such data typically consist of geochemical compositions involving 10-12 variables and approximates completely compositional data if the main component, sil- ica, is included. We suggested that what has been termed `crude' principal component analysis (PCA) of standardized data often identi ed interpretable pattern in the data more readily than analyses based on log-ratio transformed data (LRA). The funda- mental problem is that, in LRA, minor oxides with high relative variation, that may not be structure carrying, can dominate an analysis and obscure pattern associated with variables present at higher absolute levels. We investigate this further using sub- compositional data relating to archaeological glasses found on Israeli sites. A simple model for glass-making is that it is based on a `recipe' consisting of two `ingredients', sand and a source of soda. Our analysis focuses on the sub-composition of components associated with the sand source. A `crude' PCA of standardized data shows two clear compositional groups that can be interpreted in terms of di erent recipes being used at di erent periods, re ected in absolute di erences in the composition. LRA analysis can be undertaken either by normalizing the data or de ning a `residual'. In either case, after some `tuning', these groups are recovered. The results from the normalized LRA are di erently interpreted as showing that the source of sand used to make the glass di ered. These results are complementary. One relates to the recipe used. The other relates to the composition (and presumed sources) of one of the ingredients. It seems to be axiomatic in some expositions of LRA that statistical analysis of compositional data should focus on relative variation via the use of ratios. Our analysis suggests that absolute di erences can also be informative