210 resultados para Bischof
Resumo:
PURPOSE: The aim of this study is to implement augmented reality in real-time image-guided interstitial brachytherapy to allow an intuitive real-time intraoperative orientation. METHODS AND MATERIALS: The developed system consists of a common video projector, two high-resolution charge coupled device cameras, and an off-the-shelf notebook. The projector was used as a scanning device by projecting coded-light patterns to register the patient and superimpose the operating field with planning data and additional information in arbitrary colors. Subsequent movements of the nonfixed patient were detected by means of stereoscopically tracking passive markers attached to the patient. RESULTS: In a first clinical study, we evaluated the whole process chain from image acquisition to data projection and determined overall accuracy with 10 patients undergoing implantation. The described method enabled the surgeon to visualize planning data on top of any preoperatively segmented and triangulated surface (skin) with direct line of sight during the operation. Furthermore, the tracking system allowed dynamic adjustment of the data to the patient's current position and therefore eliminated the need for rigid fixation. Because of soft-part displacement, we obtained an average deviation of 1.1 mm by moving the patient, whereas changing the projector's position resulted in an average deviation of 0.9 mm. Mean deviation of all needles of an implant was 1.4 mm (range, 0.3-2.7 mm). CONCLUSIONS: The developed low-cost augmented-reality system proved to be accurate and feasible in interstitial brachytherapy. The system meets clinical demands and enables intuitive real-time intraoperative orientation and monitoring of needle implantation.
Resumo:
The evolution of subjective sleep and sleep electroencephalogram (EEG) after hemispheric stroke have been rarely studied and the relationship of sleep variables to stroke outcome is essentially unknown. We studied 27 patients with first hemispheric ischaemic stroke and no sleep apnoea in the acute (1-8 days), subacute (9-35 days), and chronic phase (5-24 months) after stroke. Clinical assessment included estimated sleep time per 24 h (EST) and Epworth sleepiness score (ESS) before stroke, as well as EST, ESS and clinical outcome after stroke. Sleep EEG data from stroke patients were compared with data from 11 hospitalized controls and published norms. Changes in EST (>2 h, 38% of patients) and ESS (>3 points, 26%) were frequent but correlated poorly with sleep EEG changes. In the chronic phase no significant differences in sleep EEG between controls and patients were found. High sleep efficiency and low wakefulness after sleep onset in the acute phase were associated with a good long-term outcome. These two sleep EEG variables improved significantly from the acute to the subacute and chronic phase. In conclusion, hemispheric strokes can cause insomnia, hypersomnia or changes in sleep needs but only rarely persisting sleep EEG abnormalities. High sleep EEG continuity in the acute phase of stroke heralds a good clinical outcome.
Resumo:
BACKGROUND: Reports on the effects of focal hemispheric damage on sleep EEG are rare and contradictory. PATIENTS AND METHODS: Twenty patients (mean age +/- SD 53 +/- 14 years) with a first acute hemispheric stroke and no sleep apnea were studied. Stroke severity [National Institute of Health Stroke Scale (NIHSS)], volume (diffusion-weighted brain MRI), and short-term outcome (Rankin score) were assessed. Within the first 8 days after stroke onset, 1-3 sleep EEG recordings per patient were performed. Sleep scoring and spectral analysis were based on the central derivation of the healthy hemisphere. Data were compared with those of 10 age-matched and gender-matched hospitalized controls with no brain damage and no sleep apnea. RESULTS: Stroke patients had higher amounts of wakefulness after sleep onset (112 +/- 53 min vs. 60 +/- 38 min, p < 0.05) and a lower sleep efficiency (76 +/- 10% vs. 86 +/- 8%, p < 0.05) than controls. Time spent in slow-wave sleep (SWS) and rapid eye movement (REM) sleep and total sleep time were lower in stroke patients, but differences were not significant. A positive correlation was found between the amount of SWS and stroke volume (r = 0.79). The slow-wave activity (SWA) ratio NREM sleep/wakefulness was lower in patients than in controls (p < 0.05), and correlated with NIHSS (r = -0.47). CONCLUSION: Acute hemispheric stroke is accompanied by alterations of sleep EEG over the healthy hemisphere that correlate with stroke volume and outcome. The increased SWA during wakefulness and SWS over the healthy hemisphere contralaterally to large strokes may reflect neuronal hypometabolism induced transhemispherically (diaschisis).