980 resultados para Birch Creek
Resumo:
The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Johnson Creek S108 Recreational Shellfish Ground in Beaufort County.
Resumo:
The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Distant Island Creek S117 Recreational Shellfish Ground in Beaufort County.
Resumo:
The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Wallace Creek S118 Recreational Shellfish Ground in Beaufort County.
Resumo:
The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Steamboat Creek S161 Recreational Shellfish Ground in Charleston County.
Resumo:
The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Toogoodoo Creek S168 Recreational Shellfish Ground in Charleston County.
Resumo:
The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Leadenwah Creek S182 Recreational Shellfish Ground in Charleston County.
Resumo:
The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Bohicket Creek S187 Recreational Shellfish Ground in Charleston County.
Resumo:
The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Cole Creek S196 Recreational Shellfish Ground in Charleston County.
Resumo:
The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Pine Island / Cedar Creek S241 Recreational Shellfish Ground in Charleston County.
Resumo:
The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Swinton Creek S251 Recreational Shellfish Ground in Charleston County.
Resumo:
The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Alligator Creek S328 Recreational Shellfish Ground in Charleston County.
Resumo:
The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Jones Creek S342 Recreational Shellfish Ground in Georgetown County.
Resumo:
Background Birch pollen is highly allergic and has the potential for episodically long range transport. Such episodes will in general occur out of the main pollen season. During that time allergy patients are unprotected and high pollen concentrations will therefore have a full allergenic impact. Objective To show that Denmark obtains significant quantities of birch pollen from Poland or Germany before the local trees start to flower. Methods Simultaneous observations of pollen concentrations and phenology in the potential source area in Poland as well as in Denmark were performed in 2006. The Danish pollen records from 2000-2006 were analysed for possible long range transport episodes and analysed with trajectories in combination with a birch tree source map. Results In 2006 high pollen concentrations were observed in Denmark with bi-hourly concentrations above 500 grains/ m3 before the local trees began to flower. Poland was identified as a source region. The analysis of the historical pollen record from Copenhagen shows significant pre-seasonal pollen episodes almost every year from 2000-2006. In all episodes trajectory analysis identified Germany or Poland as source regions. Conclusion Denmark obtains significant pre-seasonal quantities of birch pollen from either Poland or Germany almost every year. Forecasting of birch pollen quantities relevant to allergy patients must therefore take into account long-range transport. This cannot be based on measured concentrations in Denmark. The most effective way to improve the current Danish pollen forecasts is to extend the current forecasts with atmospheric transport models that take into account pollen emission and transport from countries such as Germany and Poland. Unless long range transport is taken into account pre-seasonal pollen episodes will have a full allergic impact, as the allergy patients in general will be unprotected during that time.
Resumo:
Birch pollen is highly allergenic. Knowledge of daily variations, atmospheric transport and source areas of birch pollen is important for exposure studies and for warnings to the public, especially for large cities such as London. Our results show that broad-leaved forests with high birch tree densities are located to the south and west of London. Bi-hourly Betula pollen concentrations for all the days included in the study, and for all available days with high birch pollen counts (daily average birch pollen counts >80 grains/m3), show that, on average, there is a peak between 1400 hours and 1600 hours. Back-trajectory analysis showed that, on days with high birch pollen counts (n=60), 80% of air masses arriving at the time of peak diurnal birch pollen count approached North London from the south in a 180 degree arc from due east to due west. Detailed investigations of three Betula pollen episodes, with distinctly different diurnal patterns compared to the mean daily cycle, were used to illustrate how night-time maxima (2200–0400 hours) in Betula pollen counts could be the result of transport from distant sources or long transport times caused by slow moving air masses. We conclude that the Betula pollen recorded in North London could originate from sources found to the west and south of the city and not just trees within London itself. Possible sources outside the city include Continental Europe and the Betula trees within the broad-leaved forests of Southern England.