990 resultados para Biology, Molecular|Health Sciences, Toxicology|Chemistry, Biochemistry
Resumo:
Overexpression of the thrombin receptor (Protease-Activated-Receptor-1), PAR-1, in cell lines and tissue specimens correlates with the metastatic potential of human melanoma. Utilizing lentiviral shRNA to stably silence PAR-1 in metastatic melanoma cell lines results in decreased tumor growth and lung metastasis in vivo. Since the use of viral technology is not ideal for clinical therapies, neutral liposomes (DOPC) were utilized as a delivery vehicle for PAR-1 siRNA. Our data suggest that PAR-1 siRNA-DOPC treatment by systemic delivery significantly decreases tumor growth and lung metastasis in nude mice. Concomitant decreases in angiogenic and invasive factors (IL-8, VEGF, MMP-2) were observed in PAR-1 siRNA-DOPC-treated mice. Utilizing a cDNA microarray platform, several novel PAR-1 downstream target genes were identified, including Connexin 43 (Cx-43) and Maspin. Cx-43, known to be involved in tumor cell diapedesis and attachment to endothelial cells, is decreased after PAR-1 silencing. Furthermore, the Cx-43 promoter activity was significantly inhibited in PAR-1-silenced cells suggesting transcriptional regulation of Cx-43 by PAR-1. ChIP analysis revealed a reduction in SP-1 and AP-1 binding to the Cx-43 promoter. Moreover, melanoma cell attachment to HUVEC was significantly decreased in PAR-1-silenced cells as well as in Cx-43 shRNA transduced cells. As both SP-1 and AP-1 transcription factors act as positive regulators of Cx-43, our data provide a novel mechanism for the regulation of Cx-43 expression by PAR-1. Maspin, a serine protease inhibitor with tumor-suppressor function, was found to be upregulated after PAR-1 silencing. Our results indicate that PAR-1 transcriptionally regulates Maspin, as the promoter activity was significantly increased after PAR-1 silencing. ChIP analysis revealed that silencing PAR-1 increased binding of Ets and c-Jun to the Maspin promoter. As Maspin was recently found to be a tumor-suppressor in melanoma by reducing the invasive capacity of melanoma cells, invasion assays revealed a decrease in invasion after PAR-1 silencing and in cells transduced with a Maspin expression vector. We propose that PAR-1 is key to the progression and metastasis of melanoma in part by regulating the expression of Cx-43 and Maspin. Taken together, we propose that PAR-1 is an attractive target for the treatment of melanoma.^
Resumo:
The overall purpose of this study was to assess the relationship between the promoter region polymorphism (-2607 1G/2G) of matrix metalloproteinase-1 (MMP-1) polymorphism and outcome in brain tumor patients diagnosed with a primary brain tumor between 1994 and 2000 at The University of Texas M. D. Anderson Cancer Center. The MMP-1 polymorphism was genotyped for all brain tumor patients who participated in the Family Brain Tumor Study and for whom blood samples were available. Relevant covariates were abstracted from medical records for all cases from the original protocol, including information on demographics, tumor histology, therapy and outcome was obtained. The hypothesis was that brain tumor patients with the 2G allele have a poorer prognosis and shorter survival than brain tumor patients with the 1G allele. ^ Experimental Design: Genetic variants for the MMP-1 enzyme were determined by a polymerase chain reaction-restriction fragment length polymorphism assay. Comparison was made between the overall survival for cases with the 2G polymorphism and overall survival for cases with the 1G polymorphism using multivariable Cox Proportional-Hazard analysis, controlling for age, sex, Karnofsky Performance Scale (KPS), extent of surgery, tumor histology and treatment received. Kaplan-Meier and Cox Proportional-Hazard analyses were utilized to assess if the MMP-1 polymorphisms were related to overall survival. Results: Overall survival was not statistically significantly different between the 2G allele brain tumor patients and the 1G allele patients and there was no statistically significant difference between tumor types. ^ Conclusions: No association was found between MMP-1 polymorphisms and survival in patients with malignant gliomas. ^
Resumo:
Nucleoside analogs are a class of chemotherapeutic agents with tremendous utility in treating viral infections and cancers. Traditional nucleoside analogs are DNA-directed. However, there is a new group of nucleoside analogs that induce cell death by a direct effect on RNA synthesis. The adenosine analog, 8-chloroadenosine, is incorporated into RNA and is currently in clinical trials. Another congener, 8-amino-adenosine has demonstrated toxicity in multiple myeloma cell lines. Like other nucleoside analogs, 8-amino-adenosine must be metabolized to its triphosphate to elicit a cytotoxic effect. Furthermore, 8-amino-adenosine causes a decline of the intracellular ATP pool and inhibits mRNA poly(A) adenylation. ^ Because of the previously known adenosine analog mechanism as well as the scope of the RNA directed nucleoside analog field, I hypothesized there are multiple mechanisms of transcription inhibition mediating 8-amino-adenosine-induced cell death. Prior to investigating these mechanisms, cell death by 8-amino-adenosine was characterized. 8-Amino-adenosine activates PARP cleavage and induces the caspase cascade. 8-Amino-adenosine increases Annexin V binding and the mitochondrial membrane permeability in wild-type MEF cells. In BAX/BAK deficient MEF cells, 8-amino-adenosine decreases the mitochondrial membrane permeability and induces autophagy. ^ Once cell death was characterized, the mechanisms of 8-amino-adenosine transcription inhibition were assessed. It was established that 8-aminoadenosine treatment causes 8-amino-ATP accumulation and decreases the intracellular ATP concentration, resulting in RNA synthesis inhibition. Several other mechanisms are identified. First, a relationship between ATP decline by 8-amino-adenosine or other known ATP synthesis inhibitors and RNA synthesis is established indicating that effects on cellular bioenergy, regardless of the mechanism of ATP decline, can decrease RNA synthesis. Second, 8-aminoadenosine treatment decreases the phosphorylation of serine residues on the RNA polymerase II C-terminal domain which regulates transcription initiation and elongation. Third, evidence is provided to demonstrate 8-amino-ATP is a substrate for RNA synthesis. Fourth, 8-amino-ATP is incorporated at the 3'-terminal position leading to chain termination. Finally, in vitro transcription assays show that 8-amino-ATP may compete with ATP to decrease de novo mRNA synthesis. Overall, this work demonstrates 8-amino-adenosine is a cytotoxic nucleoside analog that functions to inhibit RNA transcription through multiple mechanisms. ^
Resumo:
RAS-ERK-MAPK (Mitogen-activated protein kinase) pathway plays an essential role in proliferation, differentiation, and tumor progression. In this study, we showed that ERK downregulated FOXO3a through directly interacting with and phosphorylating FOXO3a at Serine 294, Serine 344, and Serine 425. ERK-phosphorylated FOXO3a was degraded by MDM2-mediated ubiquitin-proteosome pathway. FOXO3a phosphorylation and degradation consequently promoted cell proliferation and tumorigenesis. However, the non-phosphorylated FOXO3a mutant, which was resistant to the interaction and degradation by MDM2, resulted in inhibition of tumor formation. Forkhead O transcription factors (FOXOs) are important in the regulation of cellular functions including cell cycle arrest and cell death. Perturbation of FOXOs function leads to deregulated cell proliferation and cancer. Inactivation of FOXO proteins by activation of cell survival pathways, such as PI3K/AKT/IKK, is associated with tumorigenesis. Our study will further highlight FOXOs as new therapeutic targets in a broad spectrum of cancers. ^ Chemotherapeutic drug resistance is the most concerned problem in cancer therapy as resistance ultimately leads to treatment failure of cancer patients. In another study, we showed that blocking ERK activity with AZD6244, an established MEK1/2 inhibitor currently under human cancer clinical trials, enhances FOXO3a expression in various human cancer cell lines in vitro, and also in human colon cancer cell xenografts in vivo. Knocking down FOXO3a and its downstream gene Bim impaired AZD6244-induced growth suppression, whereas restoring activation of FOXO3a sensitized human cancer cell to AZD6244-induced growth arrest and apoptosis. More importantly, AZD6244-resistant cancer cells showed impaired endogenous FOXO3a nuclear translocation, reduced FOXO3a-Bim promoter association and significantly decreased Bim expression in response to AZD6244. AZD6244-resistant cancer cells can be sensitized to API-2 (an AKT inhibitor) and LY294002 (a PI3K inhibitor) in suppressing cell growth and colony formation, these inhibitors were known to enhance FOXO3a activity/nuclear translocation through inhibiting PI3K-AKT pathway. This study reveals novel molecular mechanism contributing to AZD6244-resistance through regulation of FOXO3a activity, further provides significant clinical implication of combining AZD6244 with PI3K/AKT inhibitors for sensitizing AZD6244-resistant cancer cells by activating FOXO3a. FOXO3a activation can be an essential pharmacological target and indicator to mediate and predict AZD6244 efficacy in clinical use. ^
Resumo:
Epigenetic silencing of tumor suppressor genes by DNA hypermethylation at promoter regions is a common event in carcinogenesis and tumor progression. Abrogation of methylation and reversal of epigenetic silencing is a very potent way in cancer treatment. However, the reactivation mechanisms are poorly understood. In this study, we first developed a cell line model system named YB5, derived from SW48 cancer cell line, which bears one copy of stably integrated EGFP gene on Chromosome 1p31.1 region. The GFP gene expression is transcriptionally silenced due to the hypermethylated promoter CMV. However, the GFP expression can be restored using demethylating agent 5-aza-2' deoxycytidine (DAC), and detected by FACS and fluorescent microscopy. Using this system, we observed the heterogeneous reactivation induced by DAC treatment. After flow sorting, GFP negative cells exhibited similar level of incomplete demethylation compared to GFP positive cells on repetitive LINE1 element, tumor suppressor genes such as P16, CDH13, and RASSF1a, and CMV promoter as well. However, the local chromatin of CMV-GFP locus altered to an open structure marked by high H3 lysine 9 acetylation and low H3 lysine 27 tri-methylation in GFP positive cells, while the GFP negative cells retained mostly the original repressive marks. Thus, we concluded that DAC induced DNA hypomethylation alone does not directly determine the level of re-expression, and the resetting of the local chromatin structure under hypomethylation environment is required for gene reactivation. Besides, a lentivirus vector-based shRNA screening was performed using the YB5 system. Although it is the rare chance that vector lands in the neighboring region of GFP, we found that the exogenous vector DNA inserted into the upstream region of GFP gene locus led to the promoter demethylation and reactivated the silenced GFP gene. Thus, epigenetic state can be affected by changing of the adjacent nucleic acid sequences. Further, this hypermethylation silenced system was utilized for epigenetic drug screening. We have found that DAC combined with carboplatin would enhance the GFP% yield and increase expression of other tumor suppressor genes than DAC alone, and this synergistic effect may be related to DNA repair process. In summary, these studies reveal that reversing of methylation silencing requires coordinated alterations of DNA methylation, chromatin structure, and local microenvironment. ^
Resumo:
Multiple myeloma (MM) is a debilitating and incurable B-cell malignancy. Previous studies have documented that the hepatocyte growth factor (HGF) plays a role in the pathobiology of MM. The receptor tyrosine kinase MET induced signaling initiates when its ligand HGF binds to the MET receptor. However, the direct importance of MET in MM has not been elucidated. The present work used three different but complementary approaches to reduce MET protein levels or its activity to demonstrate the importance of MET in MM. ^ In the first approach, MET transcript and protein levels were reduced by directly targeting the cellular MET transcripts using shRNA retroviral infection techniques. This direct reduction of MET mRNA leads to a reduction of MET protein levels, which caused an inhibition of growth and induction of cell death. ^ In the second approach, a global transcription inhibitor flavopiridol was used as a potential pharmacological tool to reduce MET levels. MET has a short half-life of 30 min for mRNA and 4 hours for protein; therefore using a RNA pol II inhibitor such as flavopiridol would be a viable option to reduce MET levels. When using flavopiridol in MM cell lines, there was a reduction of MET transcript and protein levels, which was associated with the induction of cell death. ^ Finally in the last strategy, MET kinase activity was suppressed by MP470, a small molecule inhibitor that binds to the ATP binding pocket in the kinase domain. At concentrations where phosphorylation of MET was inhibited there was induction of cell death in MM cell lines and primary cells from patients. In addition, in MM cell lines there was a decrease in phosphorylation of AKT (ser473) and caspase-9 (ser196); downstream of MET, suggesting that the mechanism of action for survival may be through these cascade of events. ^ Overall, this study provides a proof-of-principle that MET is important for the survival of MM cell lines as well as primary plasma cells obtained from patients. Therefore, targeting MET therapeutically may be a possible strategy to treat patients with this debilitating disease of MM. ^
Resumo:
Chronic inflammation is an established risk factor in the pathogenesis of many cancers. Pancreatic ductal adenocarcinoma, a malignancy with a particularly dismal prognosis, is no exception. Cyclooxygenase-2, a key enzyme induced by tissue injury, has a critical role in the generation of bioactive lipids known as prostaglandins. COX-2 overexpression is a frequent finding in pancreatic cancer, chronic pancreatitis and pancreatic intraepithelial neoplasias. To explore mechanisms through which chronic inflammation establishes and maintains a protumorigenic environment, we designed a mouse model overexpressing COX-2 in pancreatic parenchyma (BK5.COX-2 mice). We discovered that constitutive expression of COX-2 has a number of important sequelae, including upregulation of additional eicosanoid-generating enzymes and proinflammatory cytokines. Many of these molecular alterations precede the onset of significant histopathological changes. Increased levels of prostaglandins E2, D2, and F2α, 5-, 12-, and 15-hydroxyeiosatetraenoic acid (HETEs) were documented in tumors and pancreata of younger transgenic mice. Using a TaqMan™ Mouse Immune Panel, we detected elevated mRNAs for a number of proinflammatory cytokines (e.g., TNFα, IL-1β, IL-6). ^ Histological examination revealed early changes in the pancreas with similarities to human chronic pancreatitis, including loss of acinar cells, appearance of metaplastic ducts, and increased deposition of stroma. As the lesions progress, features typical of dysplastic and neoplastic cells emerged within the metaplastic ductal complexes, including cellular and nuclear atypia, crowding of cells, and loss of normal tissue architecture. The amount of fibroinflammatory stroma increased considerably; numerous small vessels were evident. A number of immunocytes from both the myeloid and lymphoid lineages were identified in transgenic pancreata. Neutrophils were the earliest to infiltrate, followed shortly by macrophages and mast cells. B and T cells generally began to appear by 8–12 weeks, and organized aggregates of lymphoid cells were often found in advanced lesions. ^ We tested the efficacy of several chemopreventive agents in this model, including celecoxib, a COX-2 selective inhibitor, pentoxifylline, a cytokine inhibitor, curcumin, a polyphenol with antioxidant and anti-inflammatory properties, and GW2974, a dual EGFR/ErbB2 inhibitor. Effects on lesion development were modest in the GW2974 and pentoxifylline treated groups, but significant prevention effects were observed with curcumin and celecoxib. ^
Resumo:
Brain metastasis is resistant to chemotherapy while the leaky blood-brain-barrier in brain metastasis can not be the underlying reason. Metastatic tumor cells (“seed”) exploit the host microenvironment (“soil”) for survival advantages. Astrocytes which maintain the homeostasis of the brain microenvironment become reactive subsequent to brain damages and protect neurons from various injuries. We observed reactive astrocytes surrounding and infiltrating into brain metastasis in both clinical specimen and experimental animal model, thus raising a possibility that reactive astrocytes may protect tumor cells from cytotoxic chemotherapeutic drugs. ^ To test this hypothesis, we first generated an immortalized astrocyte cell line from H-2Kb-tsA58 mice. The immortal mouse astrocytes expressed specific markers including GFAP. Scanning electron microscopy demonstrated that astrocytes formed direct physical contact with tumor cells. Moreover, the expression of GFAP by astrocytes was up-regulated subsequent to co-culture with tumor cells, indicating that the co-culture of astrocytes and tumor cells may serve as a model to recapitulate the pathophysiological situation of brain metastasis. ^ In co-culture, astrocytes dramatically reduced apoptosis of tumor cells produced by various chemotherapeutic drugs. This protection effect was not because of culturing cells from different species since mouse fibroblasts did not protect tumor cells from chemotherapy. Furthermore, the protection by astrocytes was completely dependent on a physical contact. ^ Gap junctional communication (GJC) served as this physical contact. Tumor cells and astrocytes both expressed the major component of gap junctional channel—connexin 43 and formed functional GJC as evidenced by the “dye transfer” assay. The blockage of GJC between tumor cells and astrocytes by either specific chemical blocker carbenoxolone (CBX) or by genetically knocking down connexin 43 on astrocytes reversed the chemo-protection. ^ Calcium was the signal molecule transmitted through GJC that rescued tumor cells from chemotherapy. Accumulation of cytoplasmic calcium preceded the progress of apoptosis in tumor cells treated with chemotherapeutic drugs. Furthermore, chelation of accumulated cytoplasmic calcium inhibited the apoptosis of tumor cells treated with chemotherapeutic drugs. Most importantly, astrocytes could “shunt” the accumulated cytoplasmic calcium from tumor cells (treated with chemotherapeutic drug) through GJC. We also used gene expression micro-array to investigate global molecular consequence of tumor cells forming GJC with astrocytes. The data demonstrated that astrocytes (but not fibroblasts), through GJC, up-regulated the expressions of several well known survival genes in tumor cells. ^ In summary, this dissertation provides a novel mechanism underlying the resistance of brain metastasis to chemotherapy, which is due to protection by astrocytes through GJC. Interference with the GJC between astrocytes and tumor cells holds great promise in sensitizing brain metastasis to chemotherapy and improving the prognosis for patients with brain metastasis. ^
Resumo:
Estrogen receptor (ER) and the tumor suppressor p53 are key prognostic indicators in breast cancer. Estrogen signaling through its receptor (ER) controls proliferation of normal as well as transformed mammary epithelial cells, and the presence of ER is established as a marker of good prognosis and response to therapy. The p53 tumor suppressor gene is often referred to as the "cellular gatekeeper" due to its extensive control of cell proliferation and apoptosis. Loss of functional p53 is a negative prognostic indicator and is correlated with lack of response to antiestrogens, reduced disease-free interval and increased chance of disease recurrence. Clinical studies have demonstrated that tumors with mutated p53 tend to be ER negative, while ER positive tumors tend to have wild type p53. ^ Recent studies from our lab indicate that p53 genotype correlates with estrogen receptor expression in mammary tumors in vivo. We therefore hypothesized that p53 regulates ER expression in mammary cancer cells by recruitment of specific cofactors to the ER promoter. To test this, MCF-7 cells were treated with doxorubicin or ionizing radiation, both of which stimulated significant increases in p53 expression, as expected, but also increased ER expression in a p53-dependent manner. Furthermore, in cells treated with siRNA targeting p53, both p53 and ER protein levels were significantly reduced. P53 was also demonstrated to transcriptionally regulate the ER promoter in luciferase assays and chromatin immunoprecipitation assays showed that p53 was recruited to the ER promoter along with CARM1, CBP, c-Jun and Sp1 and that this multifactor complex was formed in a p53-dependent manner. The regulation of ER by p53 has therapeutic implications, as the treatment of breast cancer cells with doxorubicin sensitized these cells to tamoxifen treatment. Furthermore, response to tamoxifen as well as to estrogen was dependent on p53 expression in ER positive human breast cancer cells. Taken together, these data demonstrate that p53 regulates ER expression through transcriptional control of the ER promoter, accounting for their concordant expression in human breast cancer and identifying potentially beneficial therapeutic strategies for the treatment of ER positive breast cancers. ^
Resumo:
Advances in therapy for colorectal cancer have been hampered by development of resistance to chemotherapy. The Src family of protein tyrosine kinases has been associated with colorectal cancer development and progression. Activation of the prototypic member of the family, Src, occurs in advanced colorectal cancer and is associated with a worse outcome. This work tests the hypotheses that Src activation contributes to chemoresistance in some colon tumors and that this resistance can be overcome by use of Src inhibitors. The aims of the proposal were to (1) determine if constitutive Src activation is sufficient to induce oxaliplatin resistance; (2) evaluate the role of reactive oxygen species (ROS) in the activation of Src after oxaliplatin treatment; (3) determine the frequency of Src activation in liver metastases after oxaliplatin treatment; and (4) evaluate the safety, preliminary efficacy, and pharmacodynamics of the combination of dasatinib with oxaliplatin-based therapy in patients with metastatic colorectal cancer. ^ Using a panel of colon cancer cell lines and murine models, I demonstrate that administration of oxaliplatin, a commonly utilized chemotherapy for colorectal cancer, results in an increased activation of Src. The activation occurs acutely in some, but not all, colorectal carcinoma cell lines. Cell lines selected for oxaliplatin resistance are further increased in Src activity. Treatment of cell lines with dasatinib, a non-selective pharmacologic inhibitor of the Src family kinases synergistically killed some, but not all cell lines. Cell lines with the highest acute activation of Src after oxaliplatin administration were the most sensitive to the combination therapy. Previous work demonstrated that siRNA to Src increased sensitivity to oxaliplatin, suggesting that the effects of dasatinib are primarily due to its ability to inhibit Src in these cell lines. ^ To examine the mechanism underlying these results, I examined the effects of reactive oxygen species (ROS), as previous studies have demonstrated that platinum chemotherapeutics result in intracellular oxidative stress. I demonstrated that oxaliplatin-induced reactive oxygen species were higher in the cell lines with Src activation, relative to those in which Src was not activated. This oxaliplatin-induced Src activation was blocked by the administration of anti-oxidants, thereby demonstrating that synergistic killing between dasatinib and oxaliplatin was associated with the ability of the latter to generate ROS. ^ In a murine model of colorectal cancer metastasis to the liver, the combination of dasatinib and oxaliplatin was more effective in reducing tumor volume than either agent alone. However, when oxaliplatin resistant cell lines were treated with a combination of oxaliplatin and AZD0530, an inhibitor in the clinic with increased specificity for Src, no additional benefit was seen, although Src was activated by oxaliplatin and Src substrates were inhibited. The indolent growth of oxaliplatin-resistant cells, unlike the growth of oxaliplatin resistant tumors in patients, precludes definitive interpretation of these results. ^ To further explore Src activation in patients with oxaliplatin exposure and resistance, an immunohistochemistry analysis of tumor tissue from resected liver metastases of colorectal cancer was performed. Utilizing a tissue microarray, staining for phosphorylated Src and FAK demonstrated strong staining of tumor relative to stromal and normal liver. In patients recently exposed to oxaliplatin, there was increased FAK activation, supporting the clinical relevance of the prior preclinical studies. ^ To pursue the potential clinical benefit of the combination of Src inhibition with oxaliplatin, a phase IB clinical trial was completed. Thirty patients with refractory metastatic colorectal cancer were treated with a combination of 5-FU, oxaliplatin, an epidermal-growth factor receptor monoclonal antibody, and dasatinib. The recommended phase II dose of dasatinib was established, and toxicities were quantified. Pharmacodynamic studies demonstrated increased phosphorylation of the Src substrate paxillin after dasatinib therapy. Tumor biopsies were obtained and Src expression levels were quantitated. Clinical benefit was seen with the combination, including a response rate of 20% and disease control rate of 56%, prompting a larger clinical study. ^ In summary, although Src is constitutively activated in metastatic colorectal cancer, administration of oxaliplatin chemotherapy can further increase its activity, through a reactive oxygen species dependent manner. Inhibition of Src in combination with oxaliplatin provides additional benefit in vitro, in preclinical animal models, and in the clinic. Further study of Src inhibition in the clinic and identification of predictive biomarkers of response will be required to further advance this promising therapeutic target. ^
Resumo:
To address concerns expressed about the possible effect of drilling mud discharges on shallow, low-energy estuarine ecosystems, a 12 month study was designed to detect alterations in water quality and sediment geochemistry. Each drilling mud used in the study and sediments from the study site were analyzed in the laboratory for chemical and physical characteristics. Potential water quality impacts were simulated by the EPA-COE elutriation test procedure. Mud toxicity was measured by acute and chronic bioassays with Mysidopsis bahia, Mercenaria mercenaria, and Nereis virens.^ For the field study, a relatively pristine, shallow (1.2 m) estuary (Christmas Bay, TX) without any drilling activity for the last 30 years was chosen for the study site. After a three month baseline study, three stations were selected. Station 1 was an external control. At each treatment station (2, 3), mesocosms were constructed to enclose a 3.5 m$\sp3$ water column. Each treatment station included an internal control site also. Each in situ mesocosm, except the controls, was successively dosed at a mesocosm-specific dose (1:100; 1:1,000; or 1:10,000 v/v) with 4 field collected drilling muds (spud, nondispersed, lightly-treated, and heavily-treated lignosulfonate) in sequential order over 1.5 months. Twenty-four hours after each dose, water exchange was allowed until the next treatment. Station 3 was destroyed by a winter storm. After the last treatment, the enclosures were removed and the remaining sites monitored for 6 months. One additional site was similarly dosed (1:100 v/v) with clean dredged sediment from Christmas Bay for comparison between dredged sediments and drilling muds.^ Results of the analysis of the water samples and field measurements showed that water quality was impacted during the discharges, primarily at the highest dose (1:100 v/v), but that elevated levels of C, Cr (T,F), Cr$\sp{+3}$ (T, F), N, Pb, and Zn returned to ambient levels before the end of the 24 hour exposure period or immediately after water exchange was allowed (Al, Ba(T), Chlorophyll ABC, SS, %T). Barium, from the barite, was used as a geochemical tracer in the sediments to confirm estimated doses by mass balance calculations. Barium reached a maximum of 166x background levels at the high dose mesocosm. Barium levels returned to ambient or only slightly elevated levels at the end of the 6 month monitoring period due to sediment deposition, resuspension, and bioturbation. QA/QC results using blind samples consisting of lab standards and spiked samples for both water and sediment matrices were within acceptable coefficients of variation.^ In order to avoid impacts on water quality and sediment geochemistry in a shallow estuarine ecosystem, this study concluded that a minimal dilution of 1:1,000 (v/v) would be required in addition to existing regulatory constraints. ^
Resumo:
Background: An increased understanding of the pathogenesis of cancer at the molecular level has led to the development of personalized cancer therapy based on the mutation status of the tumor. Tailoring treatments to genetic signatures has improved treatment outcomes in patients with advanced cancer. We conducted a meta-analysis to provide a quantitative summary of the response to treatment on a phase I clinical trial matched to molecular aberration in patients with advanced solid tumors. ^ Methods: Original studies that reported the results of phase I clinical trials in patients with advanced cancer treated with matched anti-cancer therapies between January 2006 and November 2011 were identified through an extensive search of Medline, Embase, Web of Science and Cochrane Library databases. Odds Ratio (OR) with 95% confidence interval (CI) was estimated for each study to assess the strength of an association between objective response rate (ORR) and mutation status. Random effects model was used to estimate the pooled OR and their 95% CI was derived. Funnel plot was used to assess publication bias. ^ Results: Thirteen studies published between January 2006 and November 2011that reported on responses to matched phase I clinical trials in patients with advanced cancer were included in the meta-analysis. Nine studies reported on the responses seen in 538 of the 835 patients with driver mutations responsive to therapy and seven studies on the responses observed in 234 of the 306 patients with mutation predictive for negative response. Random effects model was used to estimate pooled OR, which was 7.767(95% CI = 4.199 − 14.366; p-value=0.000) in patients with activating mutations that were responsive to therapy and 0.287 (95% CI = 0.119 − 0.694; p-value=0.009) in patients with mutation predictive of negative response. ^ Conclusion: It is evident from the meta-analysis that somatic mutations present in tumor tissue of patients are predictive of responses to therapy in patients with advanced cancer in phase I setting. Plethora of research and growing evidence base indicate that selection of patients based on mutation analysis of the tumor and personalizing therapy is a step forward in the war against cancer.^
Resumo:
$\beta$-adrenergic receptor-mediated activation of adenylate cyclase exhibits an agonist-specific separation between the dose/response curve (characterized by the EC$\sb{50}$) and the dose/binding curve (characterized by the K$\sb{\rm d}$). Cyclase activity can be near-maximal when receptor occupancy is quite low (EC$\sb{50}$ $\ll$ K$\sb{\rm d}$). This separation between the binding and response curves can be explained by the assumption that the rate of cyclase activation is proportional to the concentration of agonist-bound receptors, since the receptor is mobile and can activate more than one cyclase (the Collision Coupling Model of Tolkovsky and Levitzki). Here it is established that agonist binding frequency plays an additional role in adenylate cyclase activation in S49 murine lymphoma cells. Using epinephrine (EC$\sb{50}$ = 10 nM, K$\sb{\rm d}$ = 2 $\mu$M), the rate of cyclase activation decreased by 80% when a small (1.5%) receptor occupancy was restricted (by addition of the antagonist propranolol) to a small number (1.5%) of receptors rather than being proportionally distributed among the cell's entire population of receptors. Thus adenylate cyclase activity is not proportional to receptor occupancy in all circumstances. Collisions between receptor and cyclase pairs apparently occur a number of times in rapid sequence (an encounter); the high binding frequency of epinephrine ensures that discontiguous regions of the cell surface experience some period of agonist-bound receptor activity per small unit time minimizing "wasted" collisions between activated cyclase and bound receptor within an encounter. A contribution of agonist binding frequency to activation is thus possible when: (1) the mean lifetime of the agonist-receptor complex is shorter than the mean encounter time, and (2) the absolute efficiency (intrinsic ability to promote cyclase activation per collision) of the agonist-receptor complex is high. These conclusions are supported by experiments using agonists of different efficiencies and binding frequencies. These results are formalized in the Encounter Coupling Model of adenylate cyclase activation, which takes into explicit account the agonist binding frequency, agonist affinity for the $\beta$-adrenergic receptor, agonist efficiency, encounter frequency and the encounter time between receptor and cyclase. ^
Resumo:
In this thesis, we investigated the regulation of the nuclear proto-oncogene, c-fos by estrogen in vivo. In the uterus, estrogen causes a rapid, dramatic and transient induction of c-fos mRNA and this occurs by transcriptional activation. We have discovered a previously unrecognized regulatory mechanism by which fos becomes desensitized to estrogen following the transient induction. We investigated three aspects of this desensitization: (1) the kinetics and general characteristics of the phenomenon; (2) the molecular mechanism of the desensitization; and (3) the relationship of desensitization to estrogen stimulated DNA synthesis. The desensitization occurs between 3-24 hours after initial hormonal stimulation and is reversible within 72 hours. The desensitization is not species specific, in that it occurs in both the rat and mouse. The desensitization also occurs in at least two estrogen responsive tissues, the uterus and vagina. The desensitization is not unique to c-fos, since both c-myc and c-jun show similar patterns of desensitization. However, the desensitization is not observed with creatine kinase B (CKB), indicating that not all estrogen inducible genes become desensitized. In the second general area, we determined the desensitization is at the transcriptional level. The desensitization is homologous, but not heterologous, since estrogen induction does not desensitize c-fos to other agents. Other studies show that the desensitization is not due to the lack of functional estrogen receptors. Taken together, these findings suggest that the desensitization occurs at the level of the estrogen responsive element. In the third major area, we demonstrated that the desensitization appears to be related to estrogen induced DNA synthesis. Support for this suggestion comes from the observation that short acting estrogens which induce fos, but not DNA synthesis, do not produce desensitization. ^
Resumo:
The neu gene (also c-erbB-2 or HER2) encodes a 185 kilodalton protein that is frequently overexpressed in breast, ovarian and non-small cell lung cancers. Study of the regulation of neu indicates that neu gene expression can be modulated by c-myc or by the adenovirus 5 E1a gene product. This study demonstrates that the transforming protein, large T antigen, of the simian virus 40 represses neu promoter activity. Repression of neu by large T antigen is mediated through the region $-$172 to $-$79 (relative to first ATG) of the neu promoter--unlike through $-$312 to $-$172 for c-myc or E1a. This suggests a different pathway for repression of neu by large T antigen. The 10 amino acid region of large T required for binding the tumor suppressor, retinoblastoma gene product, Rb, is not necessary for repression of neu. Moreover, the tumor suppressors, Rb and p53 can independently inhibit neu promoter activity. Rb inhibits neu through a 10 base pair G-rich enhancer (GTG element) ($-$243 to $-$234) and also through regions close to transcription initiation sites ($-$172 to $-$79). Mutant Rb unable to complex large T is able to repress the region close to transcription initiation but not the GTG enhancer. Thus, Rb inhibits the two regulatory domains of the neu gene by different mechanisms. Both Rb and p53 can repress the transforming activity of activated neu in focus forming assays. These data provide evidence that tumor suppressors regulate expression of growth stimulatory genes such as neu. Therefore, one reason for the overexpression of neu that is frequently seen in breast cancer cells may be due to functional inactivation of Rb and p53 which is also a common occurrence in breast cancer cells. ^