994 resultados para Biology, Cell|Health Sciences, Pharmacology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Helicobacter pylori, which colonizes the stomach and causes the most common chronic infection in man, is associated with peptic ulceration, gastric carcinoma and gastric lymphoma. Studies in animals demonstrated that mucosal immunization could induce immune response against H. pylori and prevent H. pylori infection only if powerful mucosal adjuvants such as cholera toxin (CT) or heat-labile toxin of E. coli (LT) were used along with an H. pylori protein antigen. Adjuvants such as CT or LT cannot be used for humans because of their toxicity. Finding non-toxic alternative adjuvants/immunomodulators or immunization strategies that eliminates the use of adjuvants is critical for the development of efficacious human Helicobacter vaccines. We investigated whether several new adjuvants such as Muramyl Tripeptide Phosphatidylethonolamine (MTP-PE), QS21 (a Quil A derivative), Monophosphoryl lipid A (MPL) or heat shock proteins (HSP) of Mycobacterium tuberculosis could be feasible to develop a safe and effective mucosal vaccine against H. pylori using a murine model. C57/BL6 mice were immunized with liposomes incorporating each adjuvant along with urease, a major antigenic protein of H. pylori, to test their mucosal effectiveness. Since DNA vaccination eliminates both the use of adjuvants and antigens we also investigated whether immunization with plasmid DNA encoding urease could induce protective immunity to H. pylori infection in the same murine model. We found that oral vaccination with liposomal MTP-PE (6.7 m g) and urease, (100 m g) induced antigen-specific systemic and mucosal immune response and protected mice against H. pylori challenge when compared to control groups. Parenteral and mucosal immunizations with as little as 20 m g naked or formulated DNA encoding urease induced systemic and mucosal immune response against urease and partially protected mice against H. pylori infection. DNA vaccination provided long-lasting immunity and serum anti-urease IgG antibodies were elevated for up to 12 months. No toxicity was detected after immunizations with either liposomal MTP-PE and urease or plasmid DNA and both were well tolerated. We conclude that immunization liposomes containing MTP-PE and urease is a promising strategy deserving further investigation and may be considered for humans. DNA vaccination could be used to prime immune response prior to oral protein vaccination and may reduce the dose of protein and adjuvant needed to achieve protective immunity. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although many clinical trials investigated the use of IL-2, IL-12, and LAK in adoptive immunotherapy to treat cancer, only limited clinical success has been achieved. Better understanding of the intracellular processes that IL-2 and IL-12 utilize to generate LAK and other functions in NK cells is necessary to improve this mode of therapy. IL-2 and IL-12 stimulate extracellular signal-regulated protein kinase (ERK) and p38 MAPK in mitogen-activated T lymphocytes. The functional roles that these kinases play are still unclear. In this study, we examined whether MAPK Kinase (MKK)/ERK and/or p38 MAPK pathways are necessary for IL-2 or IL-12 to activate NK cells. We established that IL-2 activates MKK1/2/ERK pathway in freshly isolated human NK cells without any prior stimulation. Furthermore, we determined that an intact MKK/ERK pathway is necessary for IL-2 to activate NK cells to express at least four known biological responses: LAK activity, IFN-γ secretion, and CD25 and CD69 expression. Treatment of NK cells with a specific inhibitor of MKK1/2 PD98059, during the IL-2 stimulation blocked in a dose-dependent manner each of four activation parameters. Although activation of ERK was not detected in NK cells immediately after IL-12 stimulation, IL-12-induced functional activation was inhibited by the MKK1/2 inhibitor, as well. In contrast to what was observed by others in T lymphocytes, activation of p38 MAPK by IL-2 was not detected in NK cells. Additionally, a specific inhibitor of p38 MAPK (SB203850) did not inhibit IL-2-activated NK functions. These data reveal selective signaling differences between NK cells and T lymphocytes. Collectively, the data support that the MKK/ERK pathway plays a critical positive regulatory role in NK cells during activation by IL-2 and IL-12. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostate cancer is the second leading cause of male cancer-related deaths in the United States. Interestingly, prostate cancer preferentially metastasizes to skeletal tissue. Once in the bone microenvironment, advanced prostate cancer becomes highly resistant to therapeutic modalities. Several factors, such as extracellular matrix (ECM) components, have been implicated in the spread and propagation of prostatic carcinoma. In these studies, we have utilized the PC3 cell line, derived from a human bone metastasis, to investigate the influence of the predominant bone ECM protein, type I collagen, on prostate cancer cell proliferation and gene expression. We have also initiated the design and production of ribozymes to specific gene targets that may influence prostate cancer bone metastasis. ^ Our results demonstrate that PC3 cells rapidly adhere and spread on collagen I to a greater degree than on fibronectin (FN) or poly-L-lysine (PLL). Flow cytometry analysis reveals the presence of the α1, α2 and α3 collagen binding integrin subunits. The use of antibody function blocking studies reveals that PC3 cells can utilize α2β 1 and α3β1 integrins to adhere to collagen I. Once plated on collagen I, the cells exhibit increased rates of proliferation compared with cells plated on FN or tissue culture plastic. Additionally, cells plated on collagen I show increased expression of proteins associated with progression through G1 phase of the cell cycle. Inhibitor studies point to a role for phosphatidylinositol 3-kinase (PI3K), MAP kinase (MAPK), and p70 S6 kinase in collagen I-mediated PC3 cell proliferation and cyclin D1 expression. To further characterize the effect of type I collagen on prostate cancer bone metastasis, we utilized a cDNA microarray strategy to monitor type I collagen-mediated changes in gene expression. Results of this analysis revealed a gene expression profile reflecting the increased proliferation occurring on type I collagen. Microarray analysis also revealed differences in the expression of specific gene targets that may impact on prostate cancer metastasis to bone. ^ As a result of our studies on the interaction of prostate cancer cells and the skeletal ECM, we sought to develop novel molecular tools for future gene therapy of functional knockdown experiments. To this end, we developed a series of ribozymes directed against the α2 integrin and at osteopontin, a protein implicated in the metastasis of various cancers, including prostate. These ribozymes should facilitate the future study of the mechanism of prostate cancer cell proliferation, and disease progression occurring at sites of skeletal metastasis where a type I collagen-based environment predominates. ^ Together these studies demonstrate the involvement of bone ECM proteins on prostate cancer cell proliferation and suggest that they may play a significant role on the growth of prostate metastases once in the bone microenvironment. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinases are part of a complex network of signaling pathways that enable a cell to respond to changes in environmental conditions in a regulated and coordinated way. For example, Glycogen Synthase Kinase 3 beta (GSK3β) modulates conformational changes, protein-protein interaction, protein degradation, and activation of unique domains in proteins that transduce signals from the extracellular milieu to the nucleus. ^ In this project, I investigated the expression and function that GSK3β exhibits in prostate cells. The capacity of GSK3β to regulate two transcription factors (JUN and CREB), which are known to be inversely utilized in prostate tumor cells, was measured. JUN/AP1 is constitutively activated in PC-3 cells; whereas, CREB/CRE activity is ∼20 fold less than the former. GSK3β overexpression obliterates JUN/AP1 activity. With respect to CREB GSK3β increases CREB/CRE activity. Cellular levels of active GSK3β can determine whether JUN or CREB is preferentially active in the PC-3s. Theoretically, in response to a particular cellular context or stimulus, a cell may coordinate JUN and CREB function by regulating GSK3β.^ A comparison of various prostate cell lines showed that active GSK3β is less expressed in normal prostate epithelial cells than in tumor cells. Differentially expressed active (GSK3β) may correlate with progression of prostate carcinoma. If a known marker associated with carcinoma of the prostate could be shown to be regulated by GSK3β then, further study of GSK3β may lead to a better understanding of both possible prevention of the disease and improved therapy for advanced stages. ^ The androgen receptor (AR) is an intriguing phosphoprotein whose regulation is potentially determined by a variety of kinases. One of these is (GSK3β) I found that (GSK3β) is a regulator of the androgen receptor in both the unliganded and liganded states. It can inhibit AR function as measured by reporter assays. Also, GSK3β associates with the AR at the DNA binding domain because deletion constructs expressing either the n-terminus or the c-terminus (both having the DBD in common) immunoprecipitated with GSK3β. Increased understanding of how GSK3β functions in prostate cancer would provide clues into how (1) certain signal pathways are coordinated and (2) the androgen receptor may be regulated. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CEACAM1-L is an adhesion molecule that suppress the growth of prostate, breast, colon and endometrial tumors. In this study we defined the domain involved in CEACAM1-L tumor suppression activity. DU145 prostate cancer cells were infected with recombinant adenoviruses containing various CEACAM1-L mutant genes, and the effects of the mutant proteins on the growth of DU145 cells were assessed in a nude-mice xenograft model. We found that expression of the CEACAM1-L cytoplasm domain alone led to growth suppression of DU145 cells. These results suggest that the cytoplasmic domain of CEACAM1-L is necessary and sufficient for its growth-suppressive function. ^ The cytoplasmic domain of CEACAM1-L is presumed to be involved in a signaling pathway resulting in the suppression of tumor cell growth. It was not clear whether post-translational modification of CEACAM1-L is required for tumor suppressor function, therefore the importance of phosphorylation in growth-inhibitory signaling pathway was investigated. Full-length CEACAM1-L was found to be phosphorylated in vivo in both tyrosine and serine residues. Mutation of tyrosine 488 to phenylalanine did not abolish the tumor-suppressive activity of CEACAM1-L while mutation of serine 503 to alanine abolished the growth-inhibitory activity. In addition, mutation of serine 503 to aspartic acid produced tumor-suppressive activity similar to that of the wild-type CEACAM1-L. These results suggested that only phosphorylation at serine 503 is essential for CEACAM1-L's growth-inhibitory function in vivo. ^ Phosphorylation of CEACAM1-L may lead to its interaction with molecules in CEACAM1-L's signaling pathway. In the last part of this study we demonstrate that CEACAM1 is able to interact with the adapter protein p66Shc. p66Shc was found to be co-immunoprecipitated with full length CEACAM1-L but not with CEACAM1-L lacking its cytoplasmic tail. Additionally this interaction occurred in the absence of the tyrosine phosphorylation of CEACAM1-L. These results suggest that p66Shc is able to interact with the cytoplasmic domain of CEACAM1-L and this interaction does not require tyrosine phosphorylation. ^ In conclusion, this study suggests that CEACAM1-L signals tumor suppression through its cytoplasmic domain by initially becoming phosphorylated on serine 503. Additionally, the interaction with p66Shc may be involved in CEACAM1-L's signaling pathway. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pancreatic adenocarcinoma is currently the fifth-leading cause of cancer-related death in the United States. Like with other solid tumors, the growth and metastasis of pancreatic adenocarcinoma are dependent on angiogenesis. Vascular endothelial growth factor (VEGF) is a key angiogenic molecule that plays an important role in angiogenesis, growth and metastasis of many types of human cancer, including pancreatic adenocarcinoma. However, the expression and regulation of VEGF in human pancreatic cancer cells are mostly unknown. ^ To examine the hypothesis that VEGF is constitutively expressed in human pancreatic cancer cells, and can be further induced by tumor environment factors such as nitric oxide, a panel of human pancreatic cancer cell lines were studied for constitutive and inducible VEGF expression. All the cell lines examined were shown to constitutively express various levels of VEGF. To identify the mechanisms responsible for the elevated expression of VEGF, its rates of turnover and transcription were then investigated. While the half-live of VEGF was unaffected, higher transcription rates and increased VEGF promoter activity were observed in tumor cells that constitutively expressed elevated levels of VEGF. Detailed VEGF promoter analyses revealed that the region from −267 to +50, which contains five putative Sp1 binding sites, was responsible for this VEGF promoter activity. Further deletion and point mutation analyses indicated that deletion of any of the four proximal Sp1 binding sites significantly diminished VEGF promoter activity and when all four binding sites were mutated, it was completely abrogated. Consistent with these observations, high levels of constitutive Sp1 expression and DNA binding activities were detected in pancreatic cancer cells expressing high levels of VEGF. Collectively, our data indicates that constitutively expressed Sp1 leads to the constitutive expression of VEGF, and implicates that both molecules involve in the aggressive pathogenesis of human pancreatic cancer. ^ Although constitutively expressed in pancreatic cancer cells, VEGF can be further induced. In human pancreatic cancer specimens, we found that in addition to VEGF, both inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) were overexpressed, suggesting that nitric oxide might upregulate VEGF expression. Indeed, a nitric oxide donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) significantly induced VEGF mRNA expression and protein secretion in pancreatic adenocarcinoma cells in a time- and dose-dependant manner. Using a luciferase reporter containing both the VEGF promoter and the 3′ -UTR, we showed that SNAP significantly increased luciferase activity in human pancreatic cancer cells. Notwithstanding its ability to induce VEGF in vitro, pancreatic cancer cells genetically engineered to produce NO did not exhibit increased tumor growth. This inability of NO to promote tumor growth appears to be related to NO-mediated cytotoxicity. The balance between NO mediated effects on pro-angiogenesis and cytotoxicity would determine the biological outcome of NO action on tumor cells. ^ In summary, we have demonstrated that VEGF is constitutively expressed in human pancreatic cancer cells, and that overexpression of transcription factor Sp1 is primarily responsible. Although constitutively expressed in these cells, VEGF can be further induced by NO. However, using a mouse model, we have shown that NO inhibited tumor growth by promoting cytotoxicity. These studies suggest that both Sp1 and NO may be important targets for designing potentially effective therapies of human pancreatic cancer and warrant further investigation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrins are important as the primary cell adhesion molecule providing information about the extracellular microenvironment to the interior of the cell to influence cellular behavior such as differentiation, proliferation and apoptosis. Apoptotic death due to loss of adhesion is termed anoikis. In this study we have obtained a parental human gastric adenocarcinoma cell line that yielded two variant lines that had differing responses to lack of adhesion. The STAD.APO cell line undergoes apoptosis when denied adherence and the STAD.ARR cell line enters into cell cycle arrest under the identical suspended conditions. We have shown that cyclin A and cyclin D mRNA and protein are down regulated when cells are denied adherence for 24 hours in tissue culture wells previously coated with poly-HEMA. To test whether cyclin A was able to rescue cells from cell cycle arrest and/or anoikis by overriding the cell cycle machinery we transfected the full length cDNA in to each cell type. Surprisingly we found that anoikis and cell cycle arrest due to suspended conditions was not affected by overexpression of cyclin A protein, but that growth under adhered conditions was reduced compared to vector alone control transfectants. Further, we transfected other cell lines; ST7, gastric cancer, MDA-MB-4.35, breast cancer, and HPB T-cell leukemic and in no case were suspended culturing conditions overcome by cyclin A. This result indicates an additional level of regulation for the cell cycle machinery. Additionally, soluble collagen was shown to be able to save from anoikis and also from cell cycle arrest while the β1 specific mAb 33B6 was only able to save from anoikis. Immunofluorescent studies show that soluble collagen creates clusters of β1 with FAK and also β1 with actin in the STAD.ARR cells but does not in the STAD.APO cells. This result indicates that the phenotypes under suspended conditions between these cell lines may diverge at their requirements for integrin ligation. Additionally we characterized the nature of anoikis by showing cytochrome c release, caspase 3, p21 and p53 activation in STAD.APO cells. Thus, our results have implications in the understanding of integrin biology and neoplastic progression. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interferons (IFNs) have been shown to exert antiviral, cell growth regulatory, and immunomodulatory effects on target cells. Both type I (α and β) and type II (γ) IFNs regulate cellular activities by specifically inducing the expression or activation of endogenous proteins that perform distinct biological functions. p202 is a 52 kDa nuclear phosphoprotein known to be induced by IFNs. p202 interacts with a variety of cellular transcription and growth regulatory factors and affects their functions. ^ In this report, we showed that the expression of p202 was associated with an anti-proliferative effect on human prostate cancer cells. Cells that expressed p202 showed reduced ability to grow in soft-agar, indicating a loss of transformation phenotype. More importantly, p202 expression reduced the tumorigenicity of human prostate cancer cells. p202-expressing cells exhibit an elevated level of hypophosphorylated form of pRb, and reduced level of cyclin B1 and p55CDC. ^ Our data suggest that p202 is a growth inhibitor gene in prostate cancer cells and its expression may also suppress transformation phenotype and tumorigenicity of prostate cancer cells. ^ In addition to inhibiting in vitro cell growth, suppressing the tumorigenicity of breast cancer cells in vivo, p202 expression could sensitize breast cancer cells to apoptosis induced by TNF-α treatment. One possible mechanism contributing to this sensitization is the inactivation of NF-κB by its interaction with p202. These results provide a scientific basis for a novel therapeutic strategy that combines p202 and TNF-α treatment against breast cancer. ^ It has been reported that NF-κB is constitutively active in human pancreatic cancer cells. Since p202 interacts with NF-κB and inhibits its activity, we examined a potential p202-mediated anti-tumor activity in pancreatic cancer. We used both ectopic and orthotopic xenograft models and demonstrated that p202 expression is associated with multiple anti-tumor activities that include inhibition of tumor growth, reduced tumorigenicity, prolonged survival, and remarkably, suppression of metastasis and angiogenesis. In vitro invasion assay also showed that p202-expressing pancreatic cancer cells are less invasive than those without p202 expression. That observation was supported by the findings that p202-expressing tumors showed reduced expression of angiogenic factors such as IL-8, and VEGF by inhibiting their transcription, and p202-expressing pancreatic cancer cells have reduced level of MAP-2 activity, a secreted protease activity important for metastasis. Together, our results strongly suggest that p202 expression mediates multiple anti-tumor activities against pancreatic cancer, and that may provide a scientific basis for developing a p202-based gene therapy in pancreatic cancer treatment. ^ Importantly, we demonstrated a treatment efficacy by using p202/SN2 liposome complex in a nude mice orthotopic breast cancer, and an ectopic pancreatic cancer xenograft model, through systemic and intra-tumor injection respectively. These results suggest a feasibility of using p202/SN2 liposome in future pre-clinical gene therapy experiments. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to characterize epidermal hyperplasia overlying malignant melanoma, to determine the mitogenic factor responsible for the induction of this hyperplasia and to investigate its biological consequence. Whether increased keratinocyte proliferation overlying melanoma is due to production of growth factors by the tumor cells or to other mechanisms is unknown. Epidermal hyperplasia overlying human melanoma was found overlying thick (>4.0mm), but not thin (<1.0mm) tumors. Immunostaining of the sections for growth factors related to angiogenesis revealed that epidermal hyperplasia was associated with loss of IFN-β production by the keratinocytes directly overlying the tumors. Since previous studies from our laboratory have demonstrated that exogenous administration of IFN-β negatively regulates angiogenesis, we hypothesize that tumors are able to produce growth factors which stimulate the proliferation of cells in the surrounding tissues. This hyperplasia leads to a decrease in the endogenous negative regulator of angiogenesis, IFN-β. ^ The human melanoma cell line, DM-4 and several of its clones were studied to identify the mitogenic factor for keratinocytes. The expression of TGF-α directly correlated with epidermal hyperplasia in the DM-4 clones. A375SM, a human melanoma cell line that produces high levels of TGF-α, was transfected with a plasmid encoding full-length antisense TGF-α. The parental and transfected cells were implanted intradermally into nude mice. The extent of epidermal hyperplasia directly correlated with expression of TGF-α and decreased production of IFN-β, hence, increased angiogenesis. ^ In the next set of experiments, we determined the role of IFN-β on angiogenesis, tumor growth and metastasis of skin tumors. Transgenic mice containing a functional mutation in the receptor for IFN α/β were obtained. A375SM melanoma cells were implanted both s.c. and i.v. into IFN α/βR −/− mice. Tumors in the IFN α/β R −/− mice exhibited increased angiogenesis and metastasis. IFN α/βR −/− mice were exposed to chronic UV irradiation. Autochthonous tumors developed earlier in the transgenic mice than the wild-type mice. ^ Collectively, the data show that TGF-α produced by tumor cells induces proliferation of keratinocytes, leading to epidermal hyperplasia overlying malignant melanoma associated with loss of IFN-β and enhanced angiogenesis, tumorigenicity and metastasis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rexinoids are synthetic agonists for the retinoid X receptors (RXRs), a member of the nuclear receptor family of ligand-activated transcription factors. Rexinoids have been shown to lower serum glucose and insulin levels in animal models of type 2 diabetes. However the mechanisms that are responsible for the insulin-sensitizing action of rexinoids are largely unknown. Skeletal muscle accounts for the majority of insulin-regulated whole-body glucose disposal and impaired insulin action in muscle is an important contributor to the pathophysiology of type 2 diabetes. Glucose transport is a rate-limiting step in glucose utilization. The goal of these studies is to examine the mechanisms of the anti-diabetic activity of rexinoids in skeletal muscle of diabetic db/db mice. The results we have obtained showed that treatment of db/db mice with rexinoids for two weeks resulted in a significant increase in insulin-stimulated glucose transport activity in skeletal muscle. Insulin stimulates glucose transport in muscle via the regulation of both the insulin receptor substrate-1 (IRS-1)/Akt pathway and the Cbl-associated protein (CAP)/Cbl pathway. Rexinoids increased the insulin-stimulated IRS-1 tyrosine phosphorylation and Akt phosphorylation without effects on the activity of the CAP/Cbl pathway. The effects of rexinoids on the IRS-1/Akt pathway were associated with a decrease in the level of IRS-1 Serine 307 phosphorylation as well as qualitative and quantitative alterations in the fatty acyl-CoAs present within the muscle cells. In addition, rexinoids increased the expression of uncoupling protein 3 (UCP3) and activation of AMPK in diabetic muscle. This effect may also enhance the IRS-1/Akt signaling. We believe that it is the concerted activation of the IRS-1/Akt and AMPK signaling systems, a pharmacological mechanism that as far as we know, is unique to rexinoids, that results in the anti-diabetic effects of these drugs. Our results also suggest that the glucose-lowering mechanism of rexinoids is distinct from that of the thiazolidinediones (TZDs), peroxisome proliferator-activated receptor γ (PPARγ) agonists with well-characterized anti-diabetic activity. Rexinoids appear to represent a novel class of insulin sensitizers, with potential applications for the treatment of type 2 diabetes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-melanoma skin cancer is the most frequently diagnosed malignancy in the United States of which basal cell carcinoma (BCC) accounts for 65%. It has recently been determined that deregulation of the sonic hedgehog (shh) pathway leads to the development of BCC. Shh, gli-1, gli-2 gli-3, ptc and smo are overexpressed in BCC and overexpression of these genes in the epidermis results in formation of BCC-like tumors. Despite these observations, the mechanisms by which the pathway controls epidermal homeostasis and the development of the malignant phentotype are unknown. This study assessed the role of the shh pathway in epidermal homeostasis through regulation of apoptosis and differentiation. ^ The anti-apoptotic protein, bcl-2 is overexpressed in BCC, however transcriptional regulators of bcl-2 in the epidermis are unknown. Transient transfection of primary keratinocytes with gli-1 resulted in an increase of bcl-2 expression. Database analysis revealed seven candidate gli binding sites on the bcl-2 promoter. Cotransfection of increasing amounts of gli-1 in keratinoycytes resulted in a corresponding dose-dependent increase in bcl-2 promoter luciferase activity. An N-terminal mutant of gli-3 inhibited gli-1 transactivation of the bcl-2 promoter. The region −428 to −420 was found to be important for gli-1 regulation through gel shift, luciferase assays and site-directed mutagenesis. ^ In order to assess the ability of the shh pathway to regulate keratinocyte differentiation, HaCaT keratinocytes overexpressing sonic hedgehog, were grown in organotypic raft culture. Overexpression of shh induced a basal cell phenotype compared to vector control, as evidenced by transmural staining of cytokeratin 14 and altered Ki67 staining. Shh also induced keratinocyte invasion into the underlying collagen. This was associated with increased phosphorylation of EGFR, jnk and raf and increased expression of c-jun, mmp-9 and Ki67. Interestingly, shh overexpression in HaCaTs did not induce the typical downstream effects of shh signaling, suggesting a gli-independent mechanism. Sonic hedgehog's ability to induce an invasive phenotype was found to be dependent on activation of the EGF pathway as inhibition of EGFR activity with AG1478 and c-225 was able to reduce the invasiveness of HaCaT shh keratinocytes, whereas treatment with EGF augmented the invasiveness of the HaCaT shh clones. ^ These studies reveal the importance of the sonic hedgehog pathway in epidermal homeostasis by regulation of apoptosis through bcl-2, and control of keratinocyte differentiation and invasion through activation of the EGF pathway. They further suggest potential mechanisms by which deregulation of the shh pathway may lead to the development of the malignant phenotype. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metastasis, the major cause of morbidity and mortality in most cancers, is a highly organized and organ-selective process. The receptor tyrosine kinase HER2 enhances tumor metastasis, however, its role in homing to metastatic organs is poorly understood. The chemokine receptor CXCR4 has recently been shown to mediate the malignant cancer cells to specific organs. Here we show that HER2 enhances the expression of CXCR4 by increasing CXCR4 protein synthesis and inhibiting its degradation. We also observed significant correlation between HER2 and CXCR4 expression in human breast tumor tissues, and an association between CXCR4 expression and a poor overall survival rate in patients with breast cancer. Furthermore, we found that CXCR4 is required for HER2-induced invasion, migration, and adhesion activities in vitro . Finally we established stable transfectants using retroviral RNA interference to inhibit CXCR4 expression and showed that the CXCR4 is required for HER2-mediated lung metastasis in vivo. These results provide a plausible mechanism for HER2-mediated breast tumor metastasis and homing to metastatic organs, and establish a functional link between the receptor tyrosine kinase HER2 and the chemokine receptor CXCR4 signaling pathways. ^ The HER2 overexpression activates PI-3K/Akt pathways and plays an important role in mediating cell survival and tumor development. Hypoxia inducible factors (HIF) are the key regulator for angiogenesis and energy metabolism, and thereby enhance tumor growth and metastasis. HIF activation occurs in the majority of human cancers, including the HER2 overexpressing cancer cells. Previous reports suggested that increased PI-3K/Akt may activate HIF pathway in various tumors, but the detail mechanism is still not completely understood. Here we found that HER2/PI-3K/Akt pathway induces HIF-1α activation, which is independent of hypoxia, but relatively weaker than hypoxic stimulation. This phenomenon was further observed in Akt knock out mouse embryonic fibroblast cells. The PI-3K/Akt pathway does not affect HIF-1α binding with its E3 ligase VHL, but enhances the binding affinity between HIF-1α and β unit. Furthermore, we found Akt phosphorylates HIF-1β at serine 271 and further regulated HIF transcriptional activity. Our findings provided one mechanism that HER2 induce HIF activation via Akt to promote angiogenesis, and this process is independent on hypoxia, which may have implications in the oncogenic activity of HER2 and PI-3K/Akt pathway. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Eker rat model has allowed researchers the unique opportunity to study the tumorigenesis of spontaneously occurring uterine leiomyoma. Animals in this line harbor a germline mutation in the tuberous sclerosis complex-2 (Tsc-2) tumor suppressor gene and develop uterine leiomyomas at a rate of ∼65%. Primary leiomyomas obtained from humans and Eker rats along with Eker-derived leiomyoma cell lines were used in studies described herein to determine the effect of PPARγ ligand treatment on the proliferation of this cell type and to determine the role of tuberin and p27Kip1 in the etiology of this tumor type. Treatment of leiomyoma cells of human and rat origin with PPARγ-activating compounds resulted in decreased proliferation. Additionally, PPARγ ligands inhibited estrogen-dependent gene transactivation in Eker-derived leiomyoma cells suggesting that nuclear receptor cross-talk may exist between PPAR and the ER and may be responsible for the inhibition of proliferation in this cell type. Loss of tuberin, the product of the TSC-2 gene, is associated with Eker rat leiomyoma development while the role of this tumor suppressor in human leiomyoma development is unknown. Data herein show that tuberin expression is diminished in 25% of human leiomyomas tested. Additionally, we observed diminished p27 Kip1 expression in 80% of human uterine leiomyomas compared to normal myometrium. Interestingly, the loss of tuberin expression in human leiomyoma was associated with cytoplasmic p27Kip1 accumulation in this cell type. Furthermore, tuberin-null Eker rat leiomyomas and derived cell lines had predominantly cytoplasmic p27Kip1 compared to tuberin-expressing normal myometrium. Taken together, our data show that human and Eker rat leiomyoma proliferation is inhibited upon PPARγ treatment and that the etiology of human and Eker rat leiomyoma converge at loss of p27Kip1 function. Furthermore, our data indicate that the loss of p27 Kip1 function is mediated by loss of expression (in 80% of human leiomyoma) or cytoplasmic localization potentially resulting from the loss of tuberin. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pancreatic adenocarcinoma is the fourth leading cause of adult cancer death in the United States. At the time of diagnosis, most patients with pancreatic cancer have advanced and metastatic disease, which makes most of the traditional therapeutic strategies are ineffective for pancreatic cancer. A better understanding of the molecular basis of pancreatic cancer will provide the approach to identify the new strategies for early diagnosis and treatment. NF-κB is a family of transcription factor that play important roles in immune response, cell growth, apoptosis, and tumor development. We have shown that NF-κB is constitutively activated in most human pancreatic tumor tissues and cell lines, but not in the normal tissues and HPV E6E7 gene-immortalized human pancreatic ductal epithelial cells (HPDE/E6E7). By infecting the pancreatic cancer cell line Aspc-1 with a replication defective retrovirus expressing phosphorylation-defective IκBα (IκBαM), the constitutive NF-κB activation is blocked. Subsequent injection of this Aspc-1/IκBαM cells into the pancreas of athymic nude mice showed that liver metastasis is suppressed by the blockade of NF-κB activation. Current studies showed that an autocrine mechanism accounts for the constitutive activation of NF-κB in metastatic human pancreatic cancer cell lines, but not in nonmetastatic human pancreatic cancer cell lines. Further investigation showed that interleukin-1α (IL-1α) was the primary cytokine secreted by these cells that activates NF-κB. Inhibition of IL-1α activity suppressed the constitutive activation of NF-κB and the expression of its downstream target gene, uPA, in metastatic pancreatic cancer cell lines. Even though IL-1α is one of the previously identified NF-κB downstream target genes, our results demonstrate that regulation of IL-1α expression is independent of NF-κB and primarily dependent on AP-1 activity, which is in part induced by overexpression of EGF receptors and activation of MAP kinases. In conclusion, our findings suggest a possible mechanism by which NF-κB is constitutively activated in metastatic human pancreatic cancer cells and a possible missing mechanistic links between inflammation and cancer. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CYP4F subfamily comprises a group of enzymes that metabolize LTB4 to biologically less active metabolites. These inactive hydroxy products are incapable of chemotaxis and recruitment of inflammatory cells. This has led to a hypothesis that CYP4Fs may modulate inflammatory conditions serving as a signal of resolution. ^ We investigated the regulation of rat CYP4F gene expression under various inflammatory prompts including a bacterial lipopolysaccharide (LPS) treated model system, controlled traumatic brain injury (TBI) model as well as using direct cytokine challenges. CYP4Fs showed an isoform specific response to LPS. The pro-inflammatory cytokines IL-1β, IL-6 and TNF-α produced an overall inductive CYP4F response whereas IL-10, an anti-inflammatory cytokine, suppressed CYP4F gene expression in primary hepatocytes. The molecular mechanism behind IL-6 mediated CYP4F induction was partially STAT3 dependent. ^ An alternate avenue of triggering the inflammatory cascade is TBI, which is known to cause several secondary effects leading to multiorgan dysfunction syndrome. The results from this study elicited that trauma to the brain can produce acute inflammatory changes in organs distant from the injury site. Local production of LTB4 after CNS injury caused mobilization of inflammatory cells such as neutrophils to the lung. In the resolution phase, CYP4F expression increased with time along with the associated activity causing a decline in LTB4 concentration. This marked a significant reduction in neutrophil recruitment to the lung which led to subsequent recovery and repair. In addition, we showed that CYP4Fs are localized primarily in pulmonary endothelium. We speculate that the temporally regulated LTB4 clearance in the endothelium may be a novel target for treatment of pulmonary inflammation following injury. ^ In humans, several CYP4F isoforms have been identified and shown to metabolize LTB4 and other endogenous eicosanoids. However, the specific activity of the recently cloned human CYP4F11 is unknown. In the final part of this thesis, CYP4F11 protein was expressed in yeast in parallel to CYP4F3A. To our surprise, CYP4F11 displayed a different substrate profile than CYP4F3A. CYP4F3A metabolized eicosanoids while CYP4F11 was a better catalyst for therapeutic drugs. Thus, besides their endogenous function in clearing inflammation, CYP4Fs also may play a part in drug metabolism. ^