982 resultados para Biology, Bioinformatics|Computer Science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of genetic data for human immunodeficiency virus type 1 (HIV-1) and human T-cell lymphotropic virus type 1 (HTLV-1) is essential to improve treatment and public health strategies as well as to select strains for vaccine programs. However, the analysis of large quantities of genetic data requires collaborative efforts in bioinformatics, computer biology, molecular biology, evolution, and medical science. The objective of this study was to review and improve the molecular epidemiology of HIV-1 and HTLV-1 viruses isolated in Brazil using bioinformatic tools available in the Laboratório Avançado de Sáude Pública (Lasp) bioinformatics unit. The analysis of HIV-1 isolates confirmed a heterogeneous distribution of the viral genotypes circulating in the country. The Brazilian HIV-1 epidemic is characterized by the presence of multiple subtypes (B, F1, C) and B/F1 recombinant virus while, on the other hand, most of the HTLV-1 sequences were classified as Transcontinental subgroup of the Cosmopolitan subtype. Despite the high variation among HIV-1 subtypes, protein glycosylation and phosphorylation domains were conserved in the pol, gag, and env genes of the Brazilian HIV-1 strains suggesting constraints in the HIV-1 evolution process. As expected, the functional protein sites were highly conservative in the HTLV-1 env gene sequences. Furthermore, the presence of these functional sites in HIV-1 and HTLV-1 strains could help in the development of vaccines that pre-empt the viral escape process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivation: Understanding the patterns of association between polymorphisms at different loci in a population ( linkage disequilibrium, LD) is of fundamental importance in various genetic studies. Many coefficients were proposed for measuring the degree of LD, but they provide only a static view of the current LD structure. Generative models (GMs) were proposed to go beyond these measures, giving not only a description of the actual LD structure but also a tool to help understanding the process that generated such structure. GMs based in coalescent theory have been the most appealing because they link LD to evolutionary factors. Nevertheless, the inference and parameter estimation of such models is still computationally challenging. Results: We present a more practical method to build GM that describe LD. The method is based on learning weighted Bayesian network structures from haplotype data, extracting equivalence structure classes and using them to model LD. The results obtained in public data from the HapMap database showed that the method is a promising tool for modeling LD. The associations represented by the learned models are correlated with the traditional measure of LD D`. The method was able to represent LD blocks found by standard tools. The granularity of the association blocks and the readability of the models can be controlled in the method. The results suggest that the causality information gained by our method can be useful to tell about the conservability of the genetic markers and to guide the selection of subset of representative markers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important topic in genomic sequence analysis is the identification of protein coding regions. In this context, several coding DNA model-independent methods based on the occurrence of specific patterns of nucleotides at coding regions have been proposed. Nonetheless, these methods have not been completely suitable due to their dependence on an empirically predefined window length required for a local analysis of a DNA region. We introduce a method based on a modified Gabor-wavelet transform (MGWT) for the identification of protein coding regions. This novel transform is tuned to analyze periodic signal components and presents the advantage of being independent of the window length. We compared the performance of the MGWT with other methods by using eukaryote data sets. The results show that MGWT outperforms all assessed model-independent methods with respect to identification accuracy. These results indicate that the source of at least part of the identification errors produced by the previous methods is the fixed working scale. The new method not only avoids this source of errors but also makes a tool available for detailed exploration of the nucleotide occurrence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have used various computational methodologies including molecular dynamics, density functional theory, virtual screening, ADMET predictions and molecular interaction field studies to design and analyze four novel potential inhibitors of farnesyltransferase (FTase). Evaluation of two proposals regarding their drug potential as well as lead compounds have indicated them as novel promising FTase inhibitors, with theoretically interesting pharmacotherapeutic profiles, when Compared to the very active and most cited FTase inhibitors that have activity data reported, which are launched drugs or compounds in clinical tests. One of our two proposals appears to be a more promising drug candidate and FTase inhibitor, but both derivative molecules indicate potentially very good pharmacotherapeutic profiles in comparison with Tipifarnib and Lonafarnib, two reference pharmaceuticals. Two other proposals have been selected with virtual screening approaches and investigated by LIS, which suggest novel and alternatives scaffolds to design future potential FTase inhibitors. Such compounds can be explored as promising molecules to initiate a research protocol in order to discover novel anticancer drug candidates targeting farnesyltransferase, in the fight against cancer. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the present time, protein folding is an extremely active field of research including aspects of biology, chemistry, biochemistry, computer science and physics. The fundamental principles have practical applications in the exploitation of the advances in genome research, in the understanding of different pathologies and in the design of novel proteins with special functions. Although the detailed mechanisms of folding are not completely known, significant advances have been made in the understanding of this complex process through both experimental and theoretical approaches. In this review, the evolution of concepts from Anfinsen's postulate to the "new view" emphasizing the concept of the energy landscape of folding is presented. The main rules of protein folding have been established from in vitro experiments. It has been long accepted that the in vitro refolding process is a good model for understanding the mechanisms by which a nascent polypeptide chain reaches its native conformation in the cellular environment. Indeed, many denatured proteins, even those whose disulfide bridges have been disrupted, are able to refold spontaneously. Although this assumption was challenged by the discovery of molecular chaperones, from the amount of both structural and functional information now available, it has been clearly established that the main rules of protein folding deduced from in vitro experiments are also valid in the cellular environment. This modern view of protein folding permits a better understanding of the aggregation processes that play a role in several pathologies, including those induced by prions and Alzheimer's disease. Drug design and de novo protein design with the aim of creating proteins with novel functions by application of protein folding rules are making significant progress and offer perspectives for practical applications in the development of pharmaceuticals and medical diagnostics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioinformatics applies computers to problems in molecular biology. Previous research has not addressed edit metric decoders. Decoders for quaternary edit metric codes are finding use in bioinformatics problems with applications to DNA. By using side effect machines we hope to be able to provide efficient decoding algorithms for this open problem. Two ideas for decoding algorithms are presented and examined. Both decoders use Side Effect Machines(SEMs) which are generalizations of finite state automata. Single Classifier Machines(SCMs) use a single side effect machine to classify all words within a code. Locking Side Effect Machines(LSEMs) use multiple side effect machines to create a tree structure of subclassification. The goal is to examine these techniques and provide new decoders for existing codes. Presented are ideas for best practices for the creation of these two types of new edit metric decoders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La bio-informatique est un champ pluridisciplinaire qui utilise la biologie, l’informatique, la physique et les mathématiques pour résoudre des problèmes posés par la biologie. L’une des thématiques de la bio-informatique est l’analyse des séquences génomiques et la prédiction de gènes d’ARN non codants. Les ARN non codants sont des molécules d’ARN qui sont transcrites mais pas traduites en protéine et qui ont une fonction dans la cellule. Trouver des gènes d’ARN non codants par des techniques de biochimie et de biologie moléculaire est assez difficile et relativement coûteux. Ainsi, la prédiction des gènes d’ARNnc par des méthodes bio-informatiques est un enjeu important. Cette recherche décrit un travail d’analyse informatique pour chercher des nouveaux ARNnc chez le pathogène Candida albicans et d’une validation expérimentale. Nous avons utilisé comme stratégie une analyse informatique combinant plusieurs logiciels d’identification d’ARNnc. Nous avons validé un sous-ensemble des prédictions informatiques avec une expérience de puces à ADN couvrant 1979 régions du génome. Grace à cette expérience nous avons identifié 62 nouveaux transcrits chez Candida albicans. Ce travail aussi permit le développement d’une méthode d’analyse pour des puces à ADN de type tiling array. Ce travail présente également une tentation d’améliorer de la prédiction d’ARNnc avec une méthode se basant sur la recherche de motifs d’ARN dans les séquences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational Biology is the research are that contributes to the analysis of biological data through the development of algorithms which will address significant research problems.The data from molecular biology includes DNA,RNA ,Protein and Gene expression data.Gene Expression Data provides the expression level of genes under different conditions.Gene expression is the process of transcribing the DNA sequence of a gene into mRNA sequences which in turn are later translated into proteins.The number of copies of mRNA produced is called the expression level of a gene.Gene expression data is organized in the form of a matrix. Rows in the matrix represent genes and columns in the matrix represent experimental conditions.Experimental conditions can be different tissue types or time points.Entries in the gene expression matrix are real values.Through the analysis of gene expression data it is possible to determine the behavioral patterns of genes such as similarity of their behavior,nature of their interaction,their respective contribution to the same pathways and so on. Similar expression patterns are exhibited by the genes participating in the same biological process.These patterns have immense relevance and application in bioinformatics and clinical research.Theses patterns are used in the medical domain for aid in more accurate diagnosis,prognosis,treatment planning.drug discovery and protein network analysis.To identify various patterns from gene expression data,data mining techniques are essential.Clustering is an important data mining technique for the analysis of gene expression data.To overcome the problems associated with clustering,biclustering is introduced.Biclustering refers to simultaneous clustering of both rows and columns of a data matrix. Clustering is a global whereas biclustering is a local model.Discovering local expression patterns is essential for identfying many genetic pathways that are not apparent otherwise.It is therefore necessary to move beyond the clustering paradigm towards developing approaches which are capable of discovering local patterns in gene expression data.A biclusters is a submatrix of the gene expression data matrix.The rows and columns in the submatrix need not be contiguous as in the gene expression data matrix.Biclusters are not disjoint.Computation of biclusters is costly because one will have to consider all the combinations of columans and rows in order to find out all the biclusters.The search space for the biclustering problem is 2 m+n where m and n are the number of genes and conditions respectively.Usually m+n is more than 3000.The biclustering problem is NP-hard.Biclustering is a powerful analytical tool for the biologist.The research reported in this thesis addresses the problem of biclustering.Ten algorithms are developed for the identification of coherent biclusters from gene expression data.All these algorithms are making use of a measure called mean squared residue to search for biclusters.The objective here is to identify the biclusters of maximum size with the mean squared residue lower than a given threshold. All these algorithms begin the search from tightly coregulated submatrices called the seeds.These seeds are generated by K-Means clustering algorithm.The algorithms developed can be classified as constraint based,greedy and metaheuristic.Constarint based algorithms uses one or more of the various constaints namely the MSR threshold and the MSR difference threshold.The greedy approach makes a locally optimal choice at each stage with the objective of finding the global optimum.In metaheuristic approaches particle Swarm Optimization(PSO) and variants of Greedy Randomized Adaptive Search Procedure(GRASP) are used for the identification of biclusters.These algorithms are implemented on the Yeast and Lymphoma datasets.Biologically relevant and statistically significant biclusters are identified by all these algorithms which are validated by Gene Ontology database.All these algorithms are compared with some other biclustering algorithms.Algorithms developed in this work overcome some of the problems associated with the already existing algorithms.With the help of some of the algorithms which are developed in this work biclusters with very high row variance,which is higher than the row variance of any other algorithm using mean squared residue, are identified from both Yeast and Lymphoma data sets.Such biclusters which make significant change in the expression level are highly relevant biologically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivation: DNA assembly programs classically perform an all-against-all comparison of reads to identify overlaps, followed by a multiple sequence alignment and generation of a consensus sequence. If the aim is to assemble a particular segment, instead of a whole genome or transcriptome, a target-specific assembly is a more sensible approach. GenSeed is a Perl program that implements a seed-driven recursive assembly consisting of cycles comprising a similarity search, read selection and assembly. The iterative process results in a progressive extension of the original seed sequence. GenSeed was tested and validated on many applications, including the reconstruction of nuclear genes or segments, full-length transcripts, and extrachromosomal genomes. The robustness of the method was confirmed through the use of a variety of DNA and protein seeds, including short sequences derived from SAGE and proteome projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of pharmacokinetic properties (PK) is of great importance in drug discovery and development. In the present work, PK/DB (a new freely available database for PK) was designed with the aim of creating robust databases for pharmacokinetic studies and in silico absorption, distribution, metabolism and excretion (ADME) prediction. Comprehensive, web-based and easy to access, PK/DB manages 1203 compounds which represent 2973 pharmacokinetic measurements, including five models for in silico ADME prediction (human intestinal absorption, human oral bioavailability, plasma protein binding, bloodbrain barrier and water solubility).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several gene regulatory network models containing concepts of directionality at the edges have been proposed. However, only a few reports have an interpretable definition of directionality. Here, differently from the standard causality concept defined by Pearl, we introduce the concept of contagion in order to infer directionality at the edges, i.e., asymmetries in gene expression dependences of regulatory networks. Moreover, we present a bootstrap algorithm in order to test the contagion concept. This technique was applied in simulated data and, also, in an actual large sample of biological data. Literature review has confirmed some genes identified by contagion as actually belonging to the TP53 pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a likelihood ratio test ( LRT) with Bartlett correction in order to identify Granger causality between sets of time series gene expression data. The performance of the proposed test is compared to a previously published bootstrapbased approach. LRT is shown to be significantly faster and statistically powerful even within non- Normal distributions. An R package named gGranger containing an implementation for both Granger causality identification tests is also provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe AMIN (Amidase N-terminal domain), a novel protein domain found specifically in bacterial periplasmic proteins. AMIN domains are widely distributed among peptidoglycan hydrolases and transporter protein families. Based on experimental data, contextual information and phyletic profiles, we suggest that AMIN domains mediate the targeting of periplasmic or extracellular proteins to specific regions of the bacterial envelope.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In e-Science experiments, it is vital to record the experimental process for later use such as in interpreting results, verifying that the correct process took place or tracing where data came from. The process that led to some data is called the provenance of that data, and a provenance architecture is the software architecture for a system that will provide the necessary functionality to record, store and use process documentation. However, there has been little principled analysis of what is actually required of a provenance architecture, so it is impossible to determine the functionality they would ideally support. In this paper, we present use cases for a provenance architecture from current experiments in biology, chemistry, physics and computer science, and analyse the use cases to determine the technical requirements of a generic, technology and application-independent architecture. We propose an architecture that meets these requirements and evaluate a preliminary implementation by attempting to realise two of the use cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the tasks in genome annotation can be at least partially automated. Since this annotation is time-consuming, facilitating some parts of the process - thus freeing the specialist to carry out more valuable tasks - has been the motivation of many tools and annotation environments. In particular, annotation of protein function can benefit from knowledge about enzymatic processes. The use of sequence homology alone is not a good approach to derive this knowledge when there are only a few homologues of the sequence to be annotated. The alternative is to use motifs. This paper uses a symbolic machine learning approach to derive rules for the classification of enzymes according to the Enzyme Commission (EC). Our results show that, for the top class, the average global classification error is 3.13%. Our technique also produces a set of rules relating structural to functional information, which is important to understand the protein tridimensional structure and determine its biological function. © 2009 Springer Berlin Heidelberg.