979 resultados para Bioinformatics Analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Finding genes that are differentially expressed between conditions is an integral part of understanding the molecular basis of phenotypic variation. In the past decades, DNA microarrays have been used extensively to quantify the abundance of mRNA corresponding to different genes, and more recently high-throughput sequencing of cDNA (RNA-seq) has emerged as a powerful competitor. As the cost of sequencing decreases, it is conceivable that the use of RNA-seq for differential expression analysis will increase rapidly. To exploit the possibilities and address the challenges posed by this relatively new type of data, a number of software packages have been developed especially for differential expression analysis of RNA-seq data. RESULTS: We conducted an extensive comparison of eleven methods for differential expression analysis of RNA-seq data. All methods are freely available within the R framework and take as input a matrix of counts, i.e. the number of reads mapping to each genomic feature of interest in each of a number of samples. We evaluate the methods based on both simulated data and real RNA-seq data. CONCLUSIONS: Very small sample sizes, which are still common in RNA-seq experiments, impose problems for all evaluated methods and any results obtained under such conditions should be interpreted with caution. For larger sample sizes, the methods combining a variance-stabilizing transformation with the 'limma' method for differential expression analysis perform well under many different conditions, as does the nonparametric SAMseq method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ObjectiveCandidate genes for non-alcoholic fatty liver disease (NAFLD) identified by a bioinformatics approach were examined for variant associations to quantitative traits of NAFLD-related phenotypes.Research Design and MethodsBy integrating public database text mining, trans-organism protein-protein interaction transferal, and information on liver protein expression a protein-protein interaction network was constructed and from this a smaller isolated interactome was identified. Five genes from this interactome were selected for genetic analysis. Twenty-one tag single-nucleotide polymorphisms (SNPs) which captured all common variation in these genes were genotyped in 10,196 Danes, and analyzed for association with NAFLD-related quantitative traits, type 2 diabetes (T2D), central obesity, and WHO-defined metabolic syndrome (MetS).Results273 genes were included in the protein-protein interaction analysis and EHHADH, ECHS1, HADHA, HADHB, and ACADL were selected for further examination. A total of 10 nominal statistical significant associations (P<0.05) to quantitative metabolic traits were identified. Also, the case-control study showed associations between variation in the five genes and T2D, central obesity, and MetS, respectively. Bonferroni adjustments for multiple testing negated all associations.ConclusionsUsing a bioinformatics approach we identified five candidate genes for NAFLD. However, we failed to provide evidence of associations with major effects between SNPs in these five genes and NAFLD-related quantitative traits, T2D, central obesity, and MetS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During my PhD, my aim was to provide new tools to increase our capacity to analyse gene expression patterns, and to study on a large-scale basis the evolution of gene expression in animals. Gene expression patterns (when and where a gene is expressed) are a key feature in understanding gene function, notably in development. It appears clear now that the evolution of developmental processes and of phenotypes is shaped both by evolution at the coding sequence level, and at the gene expression level.Studying gene expression evolution in animals, with complex expression patterns over tissues and developmental time, is still challenging. No tools are available to routinely compare expression patterns between different species, with precision, and on a large-scale basis. Studies on gene expression evolution are therefore performed only on small genes datasets, or using imprecise descriptions of expression patterns.The aim of my PhD was thus to develop and use novel bioinformatics resources, to study the evolution of gene expression. To this end, I developed the database Bgee (Base for Gene Expression Evolution). The approach of Bgee is to transform heterogeneous expression data (ESTs, microarrays, and in-situ hybridizations) into present/absent calls, and to annotate them to standard representations of anatomy and development of different species (anatomical ontologies). An extensive mapping between anatomies of species is then developed based on hypothesis of homology. These precise annotations to anatomies, and this extensive mapping between species, are the major assets of Bgee, and have required the involvement of many co-workers over the years. My main personal contribution is the development and the management of both the Bgee database and the web-application.Bgee is now on its ninth release, and includes an important gene expression dataset for 5 species (human, mouse, drosophila, zebrafish, Xenopus), with the most data from mouse, human and zebrafish. Using these three species, I have conducted an analysis of gene expression evolution after duplication in vertebrates.Gene duplication is thought to be a major source of novelty in evolution, and to participate to speciation. It has been suggested that the evolution of gene expression patterns might participate in the retention of duplicate genes. I performed a large-scale comparison of expression patterns of hundreds of duplicated genes to their singleton ortholog in an outgroup, including both small and large-scale duplicates, in three vertebrate species (human, mouse and zebrafish), and using highly accurate descriptions of expression patterns. My results showed unexpectedly high rates of de novo acquisition of expression domains after duplication (neofunctionalization), at least as high or higher than rates of partitioning of expression domains (subfunctionalization). I found differences in the evolution of expression of small- and large-scale duplicates, with small-scale duplicates more prone to neofunctionalization. Duplicates with neofunctionalization seemed to evolve under more relaxed selective pressure on the coding sequence. Finally, even with abundant and precise expression data, the majority fate I recovered was neither neo- nor subfunctionalization of expression domains, suggesting a major role for other mechanisms in duplicate gene retention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One major methodological problem in analysis of sequence data is the determination of costs from which distances between sequences are derived. Although this problem is currently not optimally dealt with in the social sciences, it has some similarity with problems that have been solved in bioinformatics for three decades. In this article, the authors propose an optimization of substitution and deletion/insertion costs based on computational methods. The authors provide an empirical way of determining costs for cases, frequent in the social sciences, in which theory does not clearly promote one cost scheme over another. Using three distinct data sets, the authors tested the distances and cluster solutions produced by the new cost scheme in comparison with solutions based on cost schemes associated with other research strategies. The proposed method performs well compared with other cost-setting strategies, while it alleviates the justification problem of cost schemes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bionformatics is a rapidly evolving research field dedicated toanalyzing and managing biological data with computational resources. This paperaims to overview some of the processes and applications currently implementedat CCiT-UB¿s Bioinformatics Unit, focusing mainly on the areas of Genomics,Transcriptomics and Proteomics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of transcriptional regulation often needs the integration of diverse yet independent data. In the present work, sequence conservation, predic-tion of transcription factor binding sites (TFBS) and gene expression analysis have been applied to the detection of putative transcription factor (TF) modules in the regulatory region of the FGFR3 oncogene. Several TFs with conserved binding sites in the FGFR3 regulatory region have shown high positive or negative corre-lation with FGFR3 expression both in urothelial carcinoma and in benign nevi. By means of conserved TF cluster analysis, two different TF modules have been iden-tified in the promoter and first intron of FGFR3 gene. These modules contain acti-vating AP2, E2F, E47 and SP1 binding sites plus motifs for EGR with possible repressor function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AbstractAlthough the genomes from any two human individuals are more than 99.99% identical at the sequence level, some structural variation can be observed. Differences between genomes include single nucleotide polymorphism (SNP), inversion and copy number changes (gain or loss of DNA). The latter can range from submicroscopic events (CNVs, at least 1kb in size) to complete chromosomal aneuploidies. Small copy number variations have often no (lethal) consequences to the cell, but a few were associated to disease susceptibility and phenotypic variations. Larger re-arrangements (i.e. complete chromosome gain) are frequently associated with more severe consequences on health such as genomic disorders and cancer. High-throughput technologies like DNA microarrays enable the detection of CNVs in a genome-wide fashion. Since the initial catalogue of CNVs in the human genome in 2006, there has been tremendous interest in CNVs both in the context of population and medical genetics. Understanding CNV patterns within and between human populations is essential to elucidate their possible contribution to disease. But genome analysis is a challenging task; the technology evolves rapidly creating needs for novel, efficient and robust analytical tools which need to be compared with existing ones. Also, while the link between CNV and disease has been established, the relative CNV contribution is not fully understood and the predisposition to disease from CNVs of the general population has not been yet investigated.During my PhD thesis, I worked on several aspects related to CNVs. As l will report in chapter 3, ! was interested in computational methods to detect CNVs from the general population. I had access to the CoLaus dataset, a population-based study with more than 6,000 participants from the Lausanne area. All these individuals were analysed on SNP arrays and extensive clinical information were available. My work explored existing CNV detection methods and I developed a variety of metrics to compare their performance. Since these methods were not producing entirely satisfactory results, I implemented my own method which outperformed two existing methods. I also devised strategies to combine CNVs from different individuals into CNV regions.I was also interested in the clinical impact of CNVs in common disease (chapter 4). Through an international collaboration led by the Centre Hospitalier Universitaire Vaudois (CHUV) and the Imperial College London I was involved as a main data analyst in the investigation of a rare deletion at chromosome 16p11 detected in obese patients. Specifically, we compared 8,456 obese patients and 11,856 individuals from the general population and we found that the deletion was accounting for 0.7% of the morbid obesity cases and was absent in healthy non- obese controls. This highlights the importance of rare variants with strong impact and provides new insights in the design of clinical studies to identify the missing heritability in common disease.Furthermore, I was interested in the detection of somatic copy number alterations (SCNA) and their consequences in cancer (chapter 5). This project was a collaboration initiated by the Ludwig Institute for Cancer Research and involved other groups from the Swiss Institute of Bioinformatics, the CHUV and Universities of Lausanne and Geneva. The focus of my work was to identify genes with altered expression levels within somatic copy number alterations (SCNA) in seven metastatic melanoma ceil lines, using CGH and SNP arrays, RNA-seq, and karyotyping. Very few SCNA genes were shared by even two melanoma samples making it difficult to draw any conclusions at the individual gene level. To overcome this limitation, I used a network-guided analysis to determine whether any pathways, defined by amplified or deleted genes, were common among the samples. Six of the melanoma samples were potentially altered in four pathways and five samples harboured copy-number and expression changes in components of six pathways. In total, this approach identified 28 pathways. Validation with two external, large melanoma datasets confirmed all but three of the detected pathways and demonstrated the utility of network-guided approaches for both large and small datasets analysis.RésuméBien que le génome de deux individus soit similaire à plus de 99.99%, des différences de structure peuvent être observées. Ces différences incluent les polymorphismes simples de nucléotides, les inversions et les changements en nombre de copies (gain ou perte d'ADN). Ces derniers varient de petits événements dits sous-microscopiques (moins de 1kb en taille), appelés CNVs (copy number variants) jusqu'à des événements plus large pouvant affecter des chromosomes entiers. Les petites variations sont généralement sans conséquence pour la cellule, toutefois certaines ont été impliquées dans la prédisposition à certaines maladies, et à des variations phénotypiques dans la population générale. Les réarrangements plus grands (par exemple, une copie additionnelle d'un chromosome appelée communément trisomie) ont des répercutions plus grave pour la santé, comme par exemple dans certains syndromes génomiques et dans le cancer. Les technologies à haut-débit telle les puces à ADN permettent la détection de CNVs à l'échelle du génome humain. La cartographie en 2006 des CNV du génome humain, a suscité un fort intérêt en génétique des populations et en génétique médicale. La détection de différences au sein et entre plusieurs populations est un élément clef pour élucider la contribution possible des CNVs dans les maladies. Toutefois l'analyse du génome reste une tâche difficile, la technologie évolue très rapidement créant de nouveaux besoins pour le développement d'outils, l'amélioration des précédents, et la comparaison des différentes méthodes. De plus, si le lien entre CNV et maladie a été établit, leur contribution précise n'est pas encore comprise. De même que les études sur la prédisposition aux maladies par des CNVs détectés dans la population générale n'ont pas encore été réalisées.Pendant mon doctorat, je me suis concentré sur trois axes principaux ayant attrait aux CNV. Dans le chapitre 3, je détaille mes travaux sur les méthodes d'analyses des puces à ADN. J'ai eu accès aux données du projet CoLaus, une étude de la population de Lausanne. Dans cette étude, le génome de plus de 6000 individus a été analysé avec des puces SNP et de nombreuses informations cliniques ont été récoltées. Pendant mes travaux, j'ai utilisé et comparé plusieurs méthodes de détection des CNVs. Les résultats n'étant pas complètement satisfaisant, j'ai implémenté ma propre méthode qui donne de meilleures performances que deux des trois autres méthodes utilisées. Je me suis aussi intéressé aux stratégies pour combiner les CNVs de différents individus en régions.Je me suis aussi intéressé à l'impact clinique des CNVs dans le cas des maladies génétiques communes (chapitre 4). Ce projet fut possible grâce à une étroite collaboration avec le Centre Hospitalier Universitaire Vaudois (CHUV) et l'Impérial College à Londres. Dans ce projet, j'ai été l'un des analystes principaux et j'ai travaillé sur l'impact clinique d'une délétion rare du chromosome 16p11 présente chez des patients atteints d'obésité. Dans cette collaboration multidisciplinaire, nous avons comparés 8'456 patients atteint d'obésité et 11 '856 individus de la population générale. Nous avons trouvés que la délétion était impliquée dans 0.7% des cas d'obésité morbide et était absente chez les contrôles sains (non-atteint d'obésité). Notre étude illustre l'importance des CNVs rares qui peuvent avoir un impact clinique très important. De plus, ceci permet d'envisager une alternative aux études d'associations pour améliorer notre compréhension de l'étiologie des maladies génétiques communes.Egalement, j'ai travaillé sur la détection d'altérations somatiques en nombres de copies (SCNA) et de leurs conséquences pour le cancer (chapitre 5). Ce projet fut une collaboration initiée par l'Institut Ludwig de Recherche contre le Cancer et impliquant l'Institut Suisse de Bioinformatique, le CHUV et les Universités de Lausanne et Genève. Je me suis concentré sur l'identification de gènes affectés par des SCNAs et avec une sur- ou sous-expression dans des lignées cellulaires dérivées de mélanomes métastatiques. Les données utilisées ont été générées par des puces ADN (CGH et SNP) et du séquençage à haut débit du transcriptome. Mes recherches ont montrées que peu de gènes sont récurrents entre les mélanomes, ce qui rend difficile l'interprétation des résultats. Pour contourner ces limitations, j'ai utilisé une analyse de réseaux pour définir si des réseaux de signalisations enrichis en gènes amplifiés ou perdus, étaient communs aux différents échantillons. En fait, parmi les 28 réseaux détectés, quatre réseaux sont potentiellement dérégulés chez six mélanomes, et six réseaux supplémentaires sont affectés chez cinq mélanomes. La validation de ces résultats avec deux larges jeux de données publiques, a confirmée tous ces réseaux sauf trois. Ceci démontre l'utilité de cette approche pour l'analyse de petits et de larges jeux de données.Résumé grand publicL'avènement de la biologie moléculaire, en particulier ces dix dernières années, a révolutionné la recherche en génétique médicale. Grâce à la disponibilité du génome humain de référence dès 2001, de nouvelles technologies telles que les puces à ADN sont apparues et ont permis d'étudier le génome dans son ensemble avec une résolution dite sous-microscopique jusque-là impossible par les techniques traditionnelles de cytogénétique. Un des exemples les plus importants est l'étude des variations structurales du génome, en particulier l'étude du nombre de copies des gènes. Il était établi dès 1959 avec l'identification de la trisomie 21 par le professeur Jérôme Lejeune que le gain d'un chromosome supplémentaire était à l'origine de syndrome génétique avec des répercussions graves pour la santé du patient. Ces observations ont également été réalisées en oncologie sur les cellules cancéreuses qui accumulent fréquemment des aberrations en nombre de copies (telles que la perte ou le gain d'un ou plusieurs chromosomes). Dès 2004, plusieurs groupes de recherches ont répertorié des changements en nombre de copies dans des individus provenant de la population générale (c'est-à-dire sans symptômes cliniques visibles). En 2006, le Dr. Richard Redon a établi la première carte de variation en nombre de copies dans la population générale. Ces découvertes ont démontrées que les variations dans le génome était fréquentes et que la plupart d'entre elles étaient bénignes, c'est-à-dire sans conséquence clinique pour la santé de l'individu. Ceci a suscité un très grand intérêt pour comprendre les variations naturelles entre individus mais aussi pour mieux appréhender la prédisposition génétique à certaines maladies.Lors de ma thèse, j'ai développé de nouveaux outils informatiques pour l'analyse de puces à ADN dans le but de cartographier ces variations à l'échelle génomique. J'ai utilisé ces outils pour établir les variations dans la population suisse et je me suis consacré par la suite à l'étude de facteurs pouvant expliquer la prédisposition aux maladies telles que l'obésité. Cette étude en collaboration avec le Centre Hospitalier Universitaire Vaudois a permis l'identification d'une délétion sur le chromosome 16 expliquant 0.7% des cas d'obésité morbide. Cette étude a plusieurs répercussions. Tout d'abord elle permet d'effectuer le diagnostique chez les enfants à naître afin de déterminer leur prédisposition à l'obésité. Ensuite ce locus implique une vingtaine de gènes. Ceci permet de formuler de nouvelles hypothèses de travail et d'orienter la recherche afin d'améliorer notre compréhension de la maladie et l'espoir de découvrir un nouveau traitement Enfin notre étude fournit une alternative aux études d'association génétique qui n'ont eu jusqu'à présent qu'un succès mitigé.Dans la dernière partie de ma thèse, je me suis intéressé à l'analyse des aberrations en nombre de copies dans le cancer. Mon choix s'est porté sur l'étude de mélanomes, impliqués dans le cancer de la peau. Le mélanome est une tumeur très agressive, elle est responsable de 80% des décès des cancers de la peau et est souvent résistante aux traitements utilisés en oncologie (chimiothérapie, radiothérapie). Dans le cadre d'une collaboration entre l'Institut Ludwig de Recherche contre le Cancer, l'Institut Suisse de Bioinformatique, le CHUV et les universités de Lausanne et Genève, nous avons séquencés l'exome (les gènes) et le transcriptome (l'expression des gènes) de sept mélanomes métastatiques, effectués des analyses du nombre de copies par des puces à ADN et des caryotypes. Mes travaux ont permis le développement de nouvelles méthodes d'analyses adaptées au cancer, d'établir la liste des réseaux de signalisation cellulaire affectés de façon récurrente chez le mélanome et d'identifier deux cibles thérapeutiques potentielles jusqu'alors ignorées dans les cancers de la peau.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although approximately 50% of Down Syndrome (DS) patients have heart abnormalities, they exhibit an overprotection against cardiac abnormalities related with the connective tissue, for example a lower risk of coronary artery disease. A recent study reported a case of a person affected by DS who carried mutations in FBN1, the gene causative for a connective tissue disorder called Marfan Syndrome (MFS). The fact that the person did not have any cardiac alterations suggested compensation effects due to DS. This observation is supported by a previous DS meta-analysis at the molecular level where we have found an overall upregulation of FBN1 (which is usually downregulated in MFS). Additionally, that result was cross-validated with independent expression data from DS heart tissue. The aim of this work is to elucidate the role of FBN1 in DS and to establish a molecular link to MFS and MFS-related syndromes using a computational approach. To reach that, we conducted different analytical approaches over two DS studies (our previous meta-analysis and independent expression data from DS heart tissue) and revealed expression alterations in the FBN1 interaction network, in FBN1 co-expressed genes and FBN1-related pathways. After merging the significant results from different datasets with a Bayesian approach, we prioritized 85 genes that were able to distinguish control from DS cases. We further found evidence for several of these genes (47%), such as FBN1, DCN, and COL1A2, being dysregulated in MFS and MFS-related diseases. Consequently, we further encourage the scientific community to take into account FBN1 and its related network for the study of DS cardiovascular characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DnaSP is a software package for a comprehensive analysis of DNA polymorphism data. Version 5 implements a number of new features and analytical methods allowing extensive DNA polymorphism analyses on large datasets. Among other features, the newly implemented methods allow for: (i) analyses on multiple data files; (ii) haplotype phasing; (iii) analyses on insertion/deletion polymorphism data; (iv) visualizing sliding window results integrated with available genome annotations in the UCSC browser.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The R package EasyStrata facilitates the evaluation and visualization of stratified genome-wide association meta-analyses (GWAMAs) results. It provides (i) statistical methods to test and account for between-strata difference as a means to tackle gene-strata interaction effects and (ii) extended graphical features tailored for stratified GWAMA results. The software provides further features also suitable for general GWAMAs including functions to annotate, exclude or highlight specific loci in plots or to extract independent subsets of loci from genome-wide datasets. It is freely available and includes a user-friendly scripting interface that simplifies data handling and allows for combining statistical and graphical functions in a flexible fashion. AVAILABILITY: EasyStrata is available for free (under the GNU General Public License v3) from our Web site www.genepi-regensburg.de/easystrata and from the CRAN R package repository cran.r-project.org/web/packages/EasyStrata/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although approximately 50% of Down Syndrome (DS) patients have heart abnormalities, they exhibit an overprotection against cardiac abnormalities related with the connective tissue, for example a lower risk of coronary artery disease. A recent study reported a case of a person affected by DS who carried mutations in FBN1, the gene causative for a connective tissue disorder called Marfan Syndrome (MFS). The fact that the person did not have any cardiac alterations suggested compensation effects due to DS. This observation is supported by a previous DS meta-analysis at the molecular level where we have found an overall upregulation of FBN1 (which is usually downregulated in MFS). Additionally, that result was cross-validated with independent expression data from DS heart tissue. The aim of this work is to elucidate the role of FBN1 in DS and to establish a molecular link to MFS and MFS-related syndromes using a computational approach. To reach that, we conducted different analytical approaches over two DS studies (our previous meta-analysis and independent expression data from DS heart tissue) and revealed expression alterations in the FBN1 interaction network, in FBN1 co-expressed genes and FBN1-related pathways. After merging the significant results from different datasets with a Bayesian approach, we prioritized 85 genes that were able to distinguish control from DS cases. We further found evidence for several of these genes (47%), such as FBN1, DCN, and COL1A2, being dysregulated in MFS and MFS-related diseases. Consequently, we further encourage the scientific community to take into account FBN1 and its related network for the study of DS cardiovascular characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our objective was to clone, express and characterize adult Dermatophagoides farinae group 1 (Der f 1) allergens to further produce recombinant allergens for future clinical applications in order to eliminate side reactions from crude extracts of mites. Based on GenBank data, we designed primers and amplified the cDNA fragment coding for Der f 1 by nested-PCR. After purification and recovery, the cDNA fragment was cloned into the pMD19-T vector. The fragment was then sequenced, subcloned into the plasmid pET28a(+), expressed in Escherichia coli BL21 and identified by Western blotting. The cDNA coding for Der f 1 was cloned, sequenced and expressed successfully. Sequence analysis showed the presence of an open reading frame containing 966 bp that encodes a protein of 321 amino acids. Interestingly, homology analysis showed that the Der p 1 shared more than 87% identity in amino acid sequence with Eur m 1 but only 80% with Der f 1. Furthermore, phylogenetic analyses suggested that D. pteronyssinus was evolutionarily closer to Euroglyphus maynei than to D. farinae, even though D. pteronyssinus and D. farinae belong to the same Dermatophagoides genus. A total of three cysteine peptidase active sites were found in the predicted amino acid sequence, including 127-138 (QGGCGSCWAFSG), 267-277 (NYHAVNIVGYG) and 284-303 (YWIVRNSWDTTWGDSGYGYF). Moreover, secondary structure analysis revealed that Der f 1 contained an a helix (33.96%), an extended strand (17.13%), a ß turn (5.61%), and a random coil (43.30%). A simple three-dimensional model of this protein was constructed using a Swiss-model server. The cDNA coding for Der f 1 was cloned, sequenced and expressed successfully. Alignment and phylogenetic analysis suggests that D. pteronyssinus is evolutionarily more similar to E. maynei than to D. farinae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has long been known that amino acids are the building blocks for proteins and govern their folding into specific three-dimensional structures. However, the details of this process are still unknown and represent one of the main problems in structural bioinformatics, which is a highly active research area with the focus on the prediction of three-dimensional structure and its relationship to protein function. The protein structure prediction procedure encompasses several different steps from searches and analyses of sequences and structures, through sequence alignment to the creation of the structural model. Careful evaluation and analysis ultimately results in a hypothetical structure, which can be used to study biological phenomena in, for example, research at the molecular level, biotechnology and especially in drug discovery and development. In this thesis, the structures of five proteins were modeled with templatebased methods, which use proteins with known structures (templates) to model related or structurally similar proteins. The resulting models were an important asset for the interpretation and explanation of biological phenomena, such as amino acids and interaction networks that are essential for the function and/or ligand specificity of the studied proteins. The five proteins represent different case studies with their own challenges like varying template availability, which resulted in a different structure prediction process. This thesis presents the techniques and considerations, which should be taken into account in the modeling procedure to overcome limitations and produce a hypothetical and reliable three-dimensional structure. As each project shows, the reliability is highly dependent on the extensive incorporation of experimental data or known literature and, although experimental verification of in silico results is always desirable to increase the reliability, the presented projects show that also the experimental studies can greatly benefit from structural models. With the help of in silico studies, the experiments can be targeted and precisely designed, thereby saving both money and time. As the programs used in structural bioinformatics are constantly improved and the range of templates increases through structural genomics efforts, the mutual benefits between in silico and experimental studies become even more prominent. Hence, reliable models for protein three-dimensional structures achieved through careful planning and thoughtful executions are, and will continue to be, valuable and indispensable sources for structural information to be combined with functional data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent rapid development of biotechnological approaches has enabled the production of large whole genome level biological data sets. In order to handle thesedata sets, reliable and efficient automated tools and methods for data processingand result interpretation are required. Bioinformatics, as the field of studying andprocessing biological data, tries to answer this need by combining methods and approaches across computer science, statistics, mathematics and engineering to studyand process biological data. The need is also increasing for tools that can be used by the biological researchers themselves who may not have a strong statistical or computational background, which requires creating tools and pipelines with intuitive user interfaces, robust analysis workflows and strong emphasis on result reportingand visualization. Within this thesis, several data analysis tools and methods have been developed for analyzing high-throughput biological data sets. These approaches, coveringseveral aspects of high-throughput data analysis, are specifically aimed for gene expression and genotyping data although in principle they are suitable for analyzing other data types as well. Coherent handling of the data across the various data analysis steps is highly important in order to ensure robust and reliable results. Thus,robust data analysis workflows are also described, putting the developed tools andmethods into a wider context. The choice of the correct analysis method may also depend on the properties of the specific data setandthereforeguidelinesforchoosing an optimal method are given. The data analysis tools, methods and workflows developed within this thesis have been applied to several research studies, of which two representative examplesare included in the thesis. The first study focuses on spermatogenesis in murinetestis and the second one examines cell lineage specification in mouse embryonicstem cells.