908 resultados para Biogeochemical cycling
Resumo:
Carbon and nitrogen biogeochemical cycles in savannas are strongly regulated by the seasonal distribution of precipitation and pulses of nutrients released during the wetting of the dry soil and are critical to the dynamics of microorganisms and vegetation. The objective of this study was to investigate the spatial and temporal variability of C and N isotope ratios as indicators of the cycling of these elements in a cerrado sensu stricto area, within a protected area in a State Park in the state of São Paulo, Brazil. The foliar δ13C and δ15N values varied from -33.6 to -24.4 ‰ and -2.5 to 4.5 ‰, respectively. The δ13C values showed a consistent relationship with canopy height, revealing the importance of structure of the canopy over the C isotopic signature of the vegetation. Carbon isotopic variations associated with the length of the dry season indicated the importance of recent fixed C to the integrated isotopic signature of the leaf organic C. The studied Cerrado species showed a depleted foliar δ15N, but a wide range of foliar Nitrogen with no difference among canopy heights. However, seasonal variability was observed, with foliar δ15N values being higher in the transition period between dry and rainy seasons. The variation of the foliar C and N isotope ratios presented here was consistent with highly diverse vegetation with high energy available but low availability of water and N.
Resumo:
The Pantanal of Nhecolândia, the world's largest and most diversified field of tropical lakes, comprises approximately 10,000 lakes, which cover an area of 24,000 km² and vary greatly in salinity, pH, alkalinity, colour, physiography and biological activity. The hyposaline lakes have variable pHs, low alkalinity, macrophytes and low phytoplankton densities. The saline lakes have pHs above 9 or 10, high alkalinity, a high density of phytoplankton and sand beaches. The cause of the diversity of these lakes has been an open question, which we have addressed in our research. Here we propose a hybrid process, both geochemical and biological, as the main cause, including (1) a climate with an important water deficit and poverty in Ca2+ in both superficial and phreatic waters; and (2) an elevation of pH during cyanobacteria blooms. These two aspects destabilise the general tendency of Earth's surface waters towards a neutral pH. This imbalance results in an increase in the pH and dissolution of previously precipitated amorphous silica and quartzose sand. During extreme droughts, amorphous silica precipitates in the inter-granular spaces of the lake bottom sediment, increasing the isolation of the lake from the phreatic level. This paper discusses this biogeochemical problem in the light of physicochemical, chemical, altimetric and phytoplankton data.
Resumo:
The biogeochemical processes affecting the transport and cycling of terrestrial organic carbon in coastal and transition areas are still not fully understood One means of distinguishing between the sources of organic materials contributing to particulate organic matter (POM) in Babitonga Bay waters and sediments is by the direct measurement of delta(13)C of dissolved inorganic carbon (DIC) and delta(13)C and delta(15)N in the organic constituents. An isotopic survey was taken from samples collected in the Bay in late spring of 2004. The results indicate that the delta(13)C and delta(15)N compositions of OM varied from -21.7 parts per thousand to -26 2 parts per thousand. and from + 9 2 parts per thousand. to -0 1 parts per thousand, respectively. delta(13)C from DIC ranges from +0.04 parts per thousand to -12.7 parts per thousand The difference in the isotope compositions enables the determination of three distinct end-members terrestrial, marine and urban Moreover, the evaluation of source contribution to the particulate organic matter (POM) in the Bay, enables assessment of the anthropogenic impact. Comparing the depleted values of delta(13)C(DIC) and delta(13)C(POC) it is possible to further understand the carbon dynamic within Babitonga Bay (C) 2010 Elsevier BV All rights reserved
Resumo:
A recent estimate of CO(2) outgassing from Amazonian wetlands suggests that an order of magnitude more CO(2) leaves rivers through gas exchange with the atmosphere than is exported to the ocean as organic plus inorganic carbon. However, the contribution of smaller rivers is still poorly understood, mainly because of limitations in mapping their spatial extent. Considering that the largest extension of the Amazon River network is composed of small rivers, the authors` objective was to elucidate their role in air-water CO(2) exchange by developing a geographic information system ( GIS)- based model to calculate the surface area covered by rivers with channels less than 100 m wide, combined with estimated CO(2) outgassing rates at the Ji-Parana River basin, in the western Amazon. Estimated CO(2) outgassing was the main carbon export pathway for this river basin, totaling 289 Gg C yr(-1), about 2.4 times the amount of carbon exported as dissolved inorganic carbon ( 121 Gg C yr(-1)) and 1.6 times the dissolved organic carbon export ( 185 Gg C yr(-1)). The relationships established here between drainage area and channel width provide a new model for determining small river surface area, allowing regional extrapolations of air - water gas exchange. Applying this model to the entire Amazon River network of channels less than 100 m wide ( third to fifth order), the authors calculate that the surface area of small rivers is 0.3 +/- 0.05 million km(2), and it is potentially evading to the atmosphere 170 +/- 42 Tg C yr(-1) as CO(2). Therefore, these ecosystems play an important role in the regional carbon balance.
Resumo:
Carbon (C) and nitrogen (N) dynamics in agro-systems can be altered as a consequence of treated sewage effluent (TSE) irrigation. The present study evaluated the effects of TSE irrigation over 16 months on N concentrations in sugarcane (leaves, stalks and juice), total soil carbon (TC), total soil nitrogen (TN), NO(3)(-)-N in soil and nitrate (NO(3)(-)) and dissolved organic carbon (DOC) in soil solution. The soil was classified as an Oxisol and samplings were carried out during the first productive crop cycle, from February 2005 (before planting) to September 2006 (after sugarcane harvest and 16 months of TSE irrigation). The experiment was arranged in a complete block design with five treatments and four replicates. Irrigated plots received 50% of the recommended mineral N fertilization and 100% (T100), 125% (T125), 150% (T150) and 200% (T200) of crop water demand. No mineral N and irrigation were applied to the control plots. TSE irrigation enhanced sugarcane yield but resulted in total-N inputs(804-1622 kg N ha(-1)) greater than exported N (463-597 kg N ha(-1)). Hence, throughout the irrigation period, high NO(3)(-) concentrations (up to 388 mg L(-1) at T200) and DOC (up to 142 mg L(-1) at T100) were measured in soil solution below the root zone, indicating the potential of groundwater contamination. TSE irrigation did not change soil TC and TN. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The growth of Eucalyptus stands varies several fold across sites, under the influence of resource availability, stand age and stand structure. We describe a series of related studies that aim to understand the mechanisms that drive this great range in stand growth rates. In a seven-year study in Hawaii of Eucalyptus saligna at a site that was not water limited, we showed that nutrient availability differences led to a two-fold difference in stand wood production. Increasing nutrient supply in mid-rotation raised productivity to the level attained in continuously fertilised plots. Fertility affected the age-related decline in wood and foliage production; production in the intensive fertility treatments declined more slowly than in the minimal fertility treatments. The decline in stem production was driven largely by a decline in canopy photosynthesis. Over time, the fraction of canopy photosynthesis partitioned to below-ground allocation increased, as did foliar respiration, further reducing wood production. The reason for the decline in photosynthesis was uncertain, but it was not caused by nutrient limitation, a decline in leaf area or in photosynthetic capacity, or by hydraulic limitation. Most of the increase in carbon stored from conversion of the sugarcane plantation to Eucalyptus plantation was in the above-ground woody biomass. Soil carbon showed no net change. This study and other studies on carbon allocation showed that resource availability changes the fraction of annual photosynthesis used below-ground and for wood production. High resources (nutrition or water) decrease the partitioning below-ground and increase partitioning to wood production. Annual foliage and wood respiration and foliage production as a fraction of annual photosynthesis was remarkably constant across a wide range of fertility treatments and forest age. In the Brazil Eucalyptus Productivity Project, stand structure was manipulated by planting clonal Eucalyptus all at once or in three groups at three-monthly intervals, producing a stand where trees did not segregate into dominants and one that had strong dominance. The uneven stand structure reduced production 10-15% throughout the rotation.
Resumo:
Microbial community structure in saltmarsh soils is stratified by depth and availability of electron acceptors for respiration. However, the majority of the microbial species that are involved in the biogeochemical transformations of iron (Fe) and sulfur (S) in such environments are not known. Here we examined the structure of bacterial communities in a high saltmarsh soil profile and discuss their potential relationship with the geochemistry of Fe and S. Our data showed that the soil horizons Ag (oxic-suboxic), Bg (suboxic), Cri (anoxic with low concentration of pyrite Fe) and Cr-2 (anoxic with high concentrations of pyrite Fe) have distinct geochemical and microbiological characteristics. In general, total S concentration increased with depth and was correlated with the presence of pyrite Fe. Soluble + exchangable-Fe, pyrite Fe and acid volatile sulfide Fe concentrations also increased with depth, whereas ascorbate extractable-Fe concentrations decreased. The occurrence of reduced forms of Fe in the horizon Ag and oxidized Fe in horizon Cr-2 suggests that the typical redox zonation, common to several marine sediments, does not occur in the saltmarsh soil profile studied. Overall, the bacterial community structure in the horizon Ag and Cr-2 shared low levels of similarity, as compared to their adjacent horizons, Bg and Cr-1, respectively. The phylogenetic analyses of bacterial 16S rRNA gene sequences from clone libraries showed that the predominant phylotypes in horizon Ag were related to Alphaproteobacteria and Bacteroidetes. In contrast, the most abundant phylotypes in horizon Cr-2 were related to Deltaproteo-bacteria, Chloroflexi, Deferribacteres and Nitrospira. The high frequency of sequences with low levels of similarity to known bacterial species in horizons Ag and Cr-2 indicates that the bacterial communities in both horizons are dominated by novel bacterial species. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Hydrogen is being seen as an alternative energy carrier to conventional hydrocarbons to reduce greenhouse gas emissions. High efficiency separation technologies to remove hydrogen from the greenhouse gas, carbon dioxide, are therefore in growing demand. Traditional thermodynamic separation systems utilise distillation, absorption and adsorption, but are limited in efficiency at compact scales. Molecular sieve silica (MSS) membranes can perform this separation as they have high permselectivity of hydrogen to carbon dioxide, but their stability under thermal cycling is not well reported. In this work we exposed a standard MSS membrane and a carbonised template MSS (CTMSS) membrane to thermal cycling from 100 to 450°C. The standard MSS and carbonised template CTMSS membranes both showed permselectivity of helium to nitrogen dropping from around 10 to 6 in the first set of cycles, remaining stable until the last test. The permselectivity drop was due to small micropore collapse, which occurred via structure movement during cycling. Simulating single stage membrane separation with a 50:50 molar feed of H2:CO2, H2 exiting the permeate stream would start at 79% and stabilise at 67%. Higher selectivity membranes showed less of a purity drop, indicating the margin at which to design a stable membrane separation unit for CO2 capture.
Resumo:
Purpose: The relationship between six descriptors of lactate increase, peak (V) over dot O-2,W-peak, and 1-h cycling performance were compared in 24 trained, female cyclists (peak (V) over dot O-2 = 48.11 +/- 6.32 mL . kg(-1) . min(-1)). Methods: The six descriptors of lactate increase were: 1) lactate threshold (LT; the power output at which plasma lactate concentration begins to increase above the resting level during an incremental exercise test), 2) LT1 (the power output at which plasma lactate increases by 1 mM or more), 3) LTD (the lactate threshold calculated by the D-max method), 4) LTMOD (the lactate threshold calculated by a modified D-max method), 5) L4 (the power output at which plasma lactate reaches a concentration of 4 mmol-L-1), and 6) LTLOG (the power output at which plasma lactate concentration begins to increase when the log([La-]) is plotted against the log (power output)). Subjects first completed a peak (V) over dot O-2 test on a cycle ergometer. Finger-tip capillary blood was sampled within 30 s of the end of each 3-min stage for analysis of plasma lactate. Endurance performance was assessed 7 d later using a 1-h cycle test (OHT) in which subjects were directed to achieve the highest possible average power output. Results: The mean power output (W) for the OHT (+/- SD) was 183.01 +/- 18.88, and for each lactate variable was: LT (138.54 +/- 46.61), LT1 (179.17 +/- 27.25), LTLOG (143.97 +/- 45.74), L4 (198.09 +/- 33.84), LTD (178.79 +/- 24.07), LTMOD (212.28 +/- 31.75). Average power output during the OHT was more strongly correlated with all plasma lactate parameters (0.61 < r < 0.84) and W-peak (r = 0.81) than with peak (V) over dot O-2 (r = 0.55). The six lactate parameters were strongly correlated with each other (0.54 < r < 0.91) and of the six lactate parameters, LTD correlated best with endurance performance (r = 0.84). Conclusions: It was concluded that plasma lactate parameters and W-peak provide better indices of endurance performance than peak (V) over dot O-2 and that, of the six descriptors of lactate increase measured in this study, LTD is most strongly related to 1-h cycling performance in trained, female cyclists.
Resumo:
The aim of this study was to establish the effect that pre-cooling the skin without a concomitant reduction in core temperature has on subsequent self-paced cycling performance under warm humid (31 degrees C and 60% relative humidity) conditions. Seven moderately trained males performed a 30 min self-paced cycling trial on two separate occasions. The conditions were counterbalanced as control or whole-body pre-cooling by water immersion so that resting skin temperature was reduced by approximate to 5-6 degrees C. After pre-cooling, mean skin temperature was lower throughout exercise and rectal temperature was lower (P < 0.05) between 15 and 25 min of exercise. Consequently, heat storage increased (P < 0.003) from 84.0 +/- 8.8 W . m(-2) to 153 +/- 13.1 W . m(-2) (mean +/- s((x) over bar)) after pre-cooling, while total body sweat fell from 1.7 +/- 0.1 1 . h(-1) to 1.2 +/- 0.1 1 . h(-1) (P < 0.05). The distance cycled increased from 14.9 +/- 0.8 to 15.8 +/- 0.7 km (P < 0.05) after pre-cooling. The results indicate that skin pre-cooling in the absence of a reduced rectal temperature is effective in reducing thermal strain and increasing the distance cycled in 30 min under warm humid conditions.
Resumo:
The focus for interventions and research on physical activity has moved away from vigorous activity to moderate-intensity activities, such as walking. In addition, a social ecological approach to physical activity research and practice is recommended. This approach considers the influence of the environment and policies on physical activity. Although there is limited empirical published evidence related to the features of the physical environment that influence physical activity, urban planning and transport agencies have developed policies and strategies that have the potential to influence whether people walk or cycle in their neighbourhood. This paper presents the development of a framework of the potential environmental influences on walking and cycling based on published evidence and policy literature, interviews with experts and a Delphi study. The framework includes four features: functional, safety, aesthetic and destination; as well as the hypothesised factors that contribute to each of these features of the environment. In addition, the Delphi experts determined the perceived relative importance of these factors. Based on these factors, a data collection tool will be developed and the frameworks will be tested through the collection of environmental information on neighbourhoods, where data on the walking and cycling patterns have been collected previously. Identifying the environmental factors that influence walking and cycling will allow the inclusion of a public health perspective as well as those of urban planning and transport in the design of built environments. (C) 2002 Elsevier Science Ltd., All rights reserved.
Resumo:
The purpose of the present study was to examine, in highly trained cyclists, the reproducibility of cycling time to exhaustion (T-max) at the power output equal to that attained at peak oxygen uptake ((V) over dot O(2)peak) during a progressive exercise test. Forty-three highly trained male cyclists (M +/- SD; age = 25 +/- 6yrs; weight = 75 +/- 7 kg; (V) over dot(2)peak = 64.8 +/- 5.2 ml.kg(-1) . min(-1)) performed two T-max tests one week apart. While the two measures of T-max were strongly related (r = 0.884; p < 0.001), T-max from the second test (245 +/- 57 s) was significantly higher than that of the first (237 +/- 57 s; p = 0.047; two-tailed). Within-subject variability in the present study was calculated to be 6 +/- 6%, which was lower than that previously reported for Tmax in sub-elite runners (25%). The mean T-max was significantly (p < 0.05) related to both the second ventilatory turnpoint (VT2; r = 0.38) and to (V) over dot O(2)peak (r = 0.34). Despite a relatively low within-subject coefficient of variation, these data demonstrate that the second score in a series of two T-max tests may be significantly greater than the first. Moreover the present data show that T-max in highly trained cyclists is moderately related to VT2 and (V) over dot O(2)peak.
Resumo:
Background The epidemiology of rapid-cycling bipolar disorder in the community is largely unknown. Aims To investigate the epidemiological characteristics of rapid cycling and non-rapid-cycling bipolar disorder in a large cross-national community sample. Method The Composite International Diagnostic interview (CIDI version 3.0) was used to examine the prevalence, severity, comorbidity, impairment, suicidality, sociodemographics, childhood adversity and treatment of rapid-cycling and non-rapid-cycling bipolar disorder in ten countries (n=54257). Results The 12-month prevalence of rapid-cycling bipolar disorder was 0.3%. Roughly a third and two-fifths of participants with lifetime and 12-month bipolar disorder respectively met criteria for rapid cycling. Compared with the non-rapid-cycling, rapid-cycling bipolar disorder was associated with younger age at onset, higher persistence, more severe depressive symptoms, greater impairment from depressive symptoms, more out-of-role days from mania/hypomania, more anxiety disorders and an increased likelihood of using health services. Associations regarding childhood, family and other sociodemographic correlates were less clear cut. Conclusions The community epidemiological profile of rapid-cycling bipolar disorder confirms most but not all current clinically based knowledge about the illness. Declaration of interest R.C.K. has been a consultant for GlaxoSmithKline Inc, Kaiser Permanente, Pfizer Inc, Sanofi-Aventis, Shire Pharmaceuticals and Wyeth-Ayerst; has served on advisory boards for Eli Lilly & Company and Wyeth-Ayerst, and has had research support for his epidemiological studies from Bristol-Myers Squibb, Eli Lilly & Company, GlaxoSmithKline, Johnson & Johnson Pharmaceuticals, Ortho-McNeil Pharmaceuticals Inc, Pfizer Inc and Sanofi-Avertis.