966 resultados para Binary hypothesis testing
Resumo:
We discuss statistical inference problems associated with identification and testability in econometrics, and we emphasize the common nature of the two issues. After reviewing the relevant statistical notions, we consider in turn inference in nonparametric models and recent developments on weakly identified models (or weak instruments). We point out that many hypotheses, for which test procedures are commonly proposed, are not testable at all, while some frequently used econometric methods are fundamentally inappropriate for the models considered. Such situations lead to ill-defined statistical problems and are often associated with a misguided use of asymptotic distributional results. Concerning nonparametric hypotheses, we discuss three basic problems for which such difficulties occur: (1) testing a mean (or a moment) under (too) weak distributional assumptions; (2) inference under heteroskedasticity of unknown form; (3) inference in dynamic models with an unlimited number of parameters. Concerning weakly identified models, we stress that valid inference should be based on proper pivotal functions —a condition not satisfied by standard Wald-type methods based on standard errors — and we discuss recent developments in this field, mainly from the viewpoint of building valid tests and confidence sets. The techniques discussed include alternative proposed statistics, bounds, projection, split-sampling, conditioning, Monte Carlo tests. The possibility of deriving a finite-sample distributional theory, robustness to the presence of weak instruments, and robustness to the specification of a model for endogenous explanatory variables are stressed as important criteria assessing alternative procedures.
Resumo:
The technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] provides an attractive method of building exact tests from statistics whose finite sample distribution is intractable but can be simulated (provided it does not involve nuisance parameters). We extend this method in two ways: first, by allowing for MC tests based on exchangeable possibly discrete test statistics; second, by generalizing the method to statistics whose null distributions involve nuisance parameters (maximized MC tests, MMC). Simplified asymptotically justified versions of the MMC method are also proposed and it is shown that they provide a simple way of improving standard asymptotics and dealing with nonstandard asymptotics (e.g., unit root asymptotics). Parametric bootstrap tests may be interpreted as a simplified version of the MMC method (without the general validity properties of the latter).
Resumo:
In this paper, we propose exact inference procedures for asset pricing models that can be formulated in the framework of a multivariate linear regression (CAPM), allowing for stable error distributions. The normality assumption on the distribution of stock returns is usually rejected in empirical studies, due to excess kurtosis and asymmetry. To model such data, we propose a comprehensive statistical approach which allows for alternative - possibly asymmetric - heavy tailed distributions without the use of large-sample approximations. The methods suggested are based on Monte Carlo test techniques. Goodness-of-fit tests are formally incorporated to ensure that the error distributions considered are empirically sustainable, from which exact confidence sets for the unknown tail area and asymmetry parameters of the stable error distribution are derived. Tests for the efficiency of the market portfolio (zero intercepts) which explicitly allow for the presence of (unknown) nuisance parameter in the stable error distribution are derived. The methods proposed are applied to monthly returns on 12 portfolios of the New York Stock Exchange over the period 1926-1995 (5 year subperiods). We find that stable possibly skewed distributions provide statistically significant improvement in goodness-of-fit and lead to fewer rejections of the efficiency hypothesis.
Resumo:
We consider the problem of testing whether the observations X1, ..., Xn of a time series are independent with unspecified (possibly nonidentical) distributions symmetric about a common known median. Various bounds on the distributions of serial correlation coefficients are proposed: exponential bounds, Eaton-type bounds, Chebyshev bounds and Berry-Esséen-Zolotarev bounds. The bounds are exact in finite samples, distribution-free and easy to compute. The performance of the bounds is evaluated and compared with traditional serial dependence tests in a simulation experiment. The procedures proposed are applied to U.S. data on interest rates (commercial paper rate).
Resumo:
Cet article illustre l’applicabilité des méthodes de rééchantillonnage dans le cadre des tests multiples (simultanés), pour divers problèmes économétriques. Les hypothèses simultanées sont une conséquence habituelle de la théorie économique, de sorte que le contrôle de la probabilité de rejet de combinaisons de tests est un problème que l’on rencontre fréquemment dans divers contextes économétriques et statistiques. À ce sujet, on sait que le fait d’ignorer le caractère conjoint des hypothèses multiples peut faire en sorte que le niveau de la procédure globale dépasse considérablement le niveau désiré. Alors que la plupart des méthodes d’inférence multiple sont conservatrices en présence de statistiques non-indépendantes, les tests que nous proposons visent à contrôler exactement le niveau de signification. Pour ce faire, nous considérons des critères de test combinés proposés initialement pour des statistiques indépendantes. En appliquant la méthode des tests de Monte Carlo, nous montrons comment ces méthodes de combinaison de tests peuvent s’appliquer à de tels cas, sans recours à des approximations asymptotiques. Après avoir passé en revue les résultats antérieurs sur ce sujet, nous montrons comment une telle méthodologie peut être utilisée pour construire des tests de normalité basés sur plusieurs moments pour les erreurs de modèles de régression linéaires. Pour ce problème, nous proposons une généralisation valide à distance finie du test asymptotique proposé par Kiefer et Salmon (1983) ainsi que des tests combinés suivant les méthodes de Tippett et de Pearson-Fisher. Nous observons empiriquement que les procédures de test corrigées par la méthode des tests de Monte Carlo ne souffrent pas du problème de biais (ou sous-rejet) souvent rapporté dans cette littérature – notamment contre les lois platikurtiques – et permettent des gains sensibles de puissance par rapport aux méthodes combinées usuelles.
Resumo:
In this paper, we use identification-robust methods to assess the empirical adequacy of a New Keynesian Phillips Curve (NKPC) equation. We focus on the Gali and Gertler’s (1999) specification, on both U.S. and Canadian data. Two variants of the model are studied: one based on a rationalexpectations assumption, and a modification to the latter which consists in using survey data on inflation expectations. The results based on these two specifications exhibit sharp differences concerning: (i) identification difficulties, (ii) backward-looking behavior, and (ii) the frequency of price adjustments. Overall, we find that there is some support for the hybrid NKPC for the U.S., whereas the model is not suited to Canada. Our findings underscore the need for employing identificationrobust inference methods in the estimation of expectations-based dynamic macroeconomic relations.
Resumo:
Les modèles à sur-représentation de zéros discrets et continus ont une large gamme d'applications et leurs propriétés sont bien connues. Bien qu'il existe des travaux portant sur les modèles discrets à sous-représentation de zéro et modifiés à zéro, la formulation usuelle des modèles continus à sur-représentation -- un mélange entre une densité continue et une masse de Dirac -- empêche de les généraliser afin de couvrir le cas de la sous-représentation de zéros. Une formulation alternative des modèles continus à sur-représentation de zéros, pouvant aisément être généralisée au cas de la sous-représentation, est présentée ici. L'estimation est d'abord abordée sous le paradigme classique, et plusieurs méthodes d'obtention des estimateurs du maximum de vraisemblance sont proposées. Le problème de l'estimation ponctuelle est également considéré du point de vue bayésien. Des tests d'hypothèses classiques et bayésiens visant à déterminer si des données sont à sur- ou sous-représentation de zéros sont présentées. Les méthodes d'estimation et de tests sont aussi évaluées au moyen d'études de simulation et appliquées à des données de précipitation agrégées. Les diverses méthodes s'accordent sur la sous-représentation de zéros des données, démontrant la pertinence du modèle proposé. Nous considérons ensuite la classification d'échantillons de données à sous-représentation de zéros. De telles données étant fortement non normales, il est possible de croire que les méthodes courantes de détermination du nombre de grappes s'avèrent peu performantes. Nous affirmons que la classification bayésienne, basée sur la distribution marginale des observations, tiendrait compte des particularités du modèle, ce qui se traduirait par une meilleure performance. Plusieurs méthodes de classification sont comparées au moyen d'une étude de simulation, et la méthode proposée est appliquée à des données de précipitation agrégées provenant de 28 stations de mesure en Colombie-Britannique.
Resumo:
Contexte : De manière générale, on considère que le processus de validation d’un instrument de mesure porte sur la validité et la fiabilité. Or, la nature dynamique et évolutive de certaines problématiques, comme la stigmatisation des personnes vivant avec le VIH (PVVIH), laisse croire qu’il est particulièrement important de réinvestir rapidement dans la pratique, les résultats produits par les mesures ainsi validées. Objectifs : La présente thèse vise à développer et valider une échelle de mesure des attitudes stigmatisantes envers les PVVIH en intégrant un dispositif participatif. La thèse utilise en partie les données d’une enquête de surveillance des attitudes envers les PVVIH au Québec, elle comporte trois études qui répondent aux trois objectifs spécifiques suivants : (1) valider la version révisée d’un instrument de mesure des attitudes favorables à la stigmatisation dans la population générale du Québec envers les PVVIH; (2) analyser la relation entre la mesure des attitudes favorables à la stigmatisation et le recours au dépistage du VIH dans la population générale du Québec; (3) décrire et analyser les processus de circulation et d’utilisation des connaissances produites par l’instrument de mesure dans les réseaux professionnels des membres d’un comité consultatif. Méthodes : Un comité consultatif réunissant plusieurs partenaires issus de différents milieux a été constitué dès l’obtention de la subvention. Il a été consulté et informé avant, pendant et après l’enquête téléphonique populationnelle (n=1500) ayant permis de colliger les données. L’Échelle des Attitudes Stigmatisantes envers les Personnes Vivant avec le VIH (EASE-PVVIH) a été validée au moyen de plusieurs analyses psychométriques : analyses factorielles exploratoires et confirmatives, corrélations, régression linéaire multiple, test-t, tests d’hypothèses d’invariance de la structure factorielle et alphas de Cronbach (objectif 1). L’association entre les attitudes favorables à la stigmatisation et le recours au dépistage du VIH a été testée à l’aide de régressions logistiques hiérarchiques (objectif 2). Quant aux processus de circulation et d’utilisation des connaissances dans les réseaux professionnels, ils ont été analysés au moyen d’une étude de cas rétrospective (objectif 3). Résultats : Les analyses ont révélé trois résultats importants. Premièrement, d’un point de vue psychométrique, l’EASE-PVVIH est un outil fiable et valide pour mesurer les attitudes stigmatisantes envers les personnes vivant avec le VIH. Deuxièmement, sous une certaine forme caractérisée par l’inquiétude éprouvée lors de rencontres occasionnelles, les attitudes stigmatisantes par rapport aux personnes vivant avec le VIH semblent nuire au recours au test de dépistage dans la population générale au Québec. Troisièmement, un dispositif participatif en particulier, soit un comité consultatif, semble être un moyen pour favoriser le réinvestissement rapide et étendre la portée des résultats produits par la recherche dans des actions concrètes de santé publique. Conclusion : Ces résultats mettent en lumière la portée d’un dispositif participatif pour la validation d’instrument de mesure. L’arrimage entre les préoccupations scientifiques et pratiques apparaît être une avenue prometteuse pour améliorer la qualité et la pertinence sociale des données produites par les mesures.
Resumo:
La prise de décision est un processus computationnel fondamental dans de nombreux aspects du comportement animal. Le modèle le plus souvent rencontré dans les études portant sur la prise de décision est appelé modèle de diffusion. Depuis longtemps, il explique une grande variété de données comportementales et neurophysiologiques dans ce domaine. Cependant, un autre modèle, le modèle d’urgence, explique tout aussi bien ces mêmes données et ce de façon parcimonieuse et davantage encrée sur la théorie. Dans ce travail, nous aborderons tout d’abord les origines et le développement du modèle de diffusion et nous verrons comment il a été établi en tant que cadre de travail pour l’interprétation de la plupart des données expérimentales liées à la prise de décision. Ce faisant, nous relèveront ses points forts afin de le comparer ensuite de manière objective et rigoureuse à des modèles alternatifs. Nous réexaminerons un nombre d’assomptions implicites et explicites faites par ce modèle et nous mettrons alors l’accent sur certains de ses défauts. Cette analyse servira de cadre à notre introduction et notre discussion du modèle d’urgence. Enfin, nous présenterons une expérience dont la méthodologie permet de dissocier les deux modèles, et dont les résultats illustrent les limites empiriques et théoriques du modèle de diffusion et démontrent en revanche clairement la validité du modèle d'urgence. Nous terminerons en discutant l'apport potentiel du modèle d'urgence pour l'étude de certaines pathologies cérébrales, en mettant l'accent sur de nouvelles perspectives de recherche.
Resumo:
Several eco-toxicological studies have shown that insectivorous mammals, due to their feeding habits, easily accumulate high amounts of pollutants in relation to other mammal species. To assess the bio-accumulation levels of toxic metals and their in°uence on essential metals, we quantified the concentration of 19 elements (Ca, K, Fe, B, P, S, Na, Al, Zn, Ba, Rb, Sr, Cu, Mn, Hg, Cd, Mo, Cr and Pb) in bones of 105 greater white-toothed shrews (Crocidura russula) from a polluted (Ebro Delta) and a control (Medas Islands) area. Since chemical contents of a bio-indicator are mainly compositional data, conventional statistical analyses currently used in eco-toxicology can give misleading results. Therefore, to improve the interpretation of the data obtained, we used statistical techniques for compositional data analysis to define groups of metals and to evaluate the relationships between them, from an inter-population viewpoint. Hypothesis testing on the adequate balance-coordinates allow us to confirm intuition based hypothesis and some previous results. The main statistical goal was to test equal means of balance-coordinates for the two defined populations. After checking normality, one-way ANOVA or Mann-Whitney tests were carried out for the inter-group balances
Resumo:
Lecture notes in LaTex
Resumo:
Exam questions and solutions in PDF
Resumo:
Exercises and solutions in PDF
Resumo:
Lecture notes in PDF
Resumo:
Exam questions and solutions in LaTex. Diagrams for the questions are all together in the support.zip file, as .eps files