236 resultados para Binaries


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the synthesis, crystal structures, and optical absorption spectra of transition metal substituted spiroffite derivatives, Zn2-xMxTe3O8 (M-II = Co, Ni, Cu; 0 < x <= 1.0). The oxides are readily synthesized by solid state reaction of stoichiometric mixtures of the constituent binaries at 620 degrees C. Reitveld refinement of the crystal structures from powder X-ray diffraction (XRD) data shows that the Zn/MO6 octahedra are strongly distorted, as in the parent Zn2Te3O8 structure, consisting of five relatively short Zn/M-II-O bonds (1.898-2.236 angstrom) and one longer Zn/M-II-O bond (2.356-2.519 angstrom). We have interpreted the unique colors and the optical absorption/diffuse reflectance spectra of Zn2-xMxTe3O8 in the visible, in terms of the observed/irregular coordination geometry of the Zn/M-II-O chromophores. We could not however prepare the fully substituted M2Te3O8 (M-II = Co, Ni, Cu) by the direct solid state reaction method. Density Functional Theory (DFT) modeling of the electronic structure of both the parent and the transition metal substituted derivatives provides new insights into the bonding and the role of transition metals toward the origin of color in these materials. We believe that transition metal substituted spiroffites Zn2-xMxTe3O8 reported here suggest new directions for the development of colored inorganic materials/pigments featuring irregular/distorted oxygen coordination polyhedra around transition metal ions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the effects of optically thin radiative cooling on the structure of radiatively inefficient accretion flows (RIAFs). The flow structure is geometrically thick, and independent of the gas density and cooling, if the cooling time is longer than the viscous time-scale (i.e. t(cool) greater than or similar to t(visc)). For higher densities, the gas can cool before it can accrete and forms the standard geometrically thin, optically thick Shakura-Sunyaev disc. For usual cooling processes (such as bremsstrahlung), we expect an inner hot flow and an outer thin disc. For a short cooling time the accretion flow separates into two phases: a radiatively inefficient hot coronal phase and a cold thin disc. We argue that there is an upper limit on the density of the hot corona corresponding to a critical value of t(cool)/t(ff)( similar to 10-100), the ratio of the cooling time and the free-fall time. Based on our simulations, we have developed a model for transients observed in black hole X-ray binaries (XRBs). An XRB in a quiescent hot RIAF state can transition to a cold blackbody-dominated state because of an increase in the mass accretion rate. The transition from a thin disc to a RIAF happens because of mass exhaustion due to accretion; the transition happens when the cooling time becomes longer than the viscous time at inner radii. Since the viscous time-scale for a geometrically thin disc is quite long, the high-soft state is expected to be long-lived. The different time-scales in black hole transients correspond to different physical processes such as viscous evolution, cooling and free fall. Our model captures the overall features of observed state transitions in XRBs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a detailed timing and spectral analysis of the Be X-ray binary SW J2000.6+3210 discovered by the Burst Alert Telescope Galactic plane survey. Two Suzaku observations of the source made at six months interval, reveal pulsations at similar to 890 s for both observations with a much weaker pulse fraction in the second one. Pulsations are clearly seen in the energy band of 0.3-10 keV of X-ray Imaging Spectrometer for both observations and at high energies up to 40 keV for the second observation. The broad-band X-ray spectrum is consistent with a power-law and high-energy cut-off model along with a hot blackbody component. No change in spectral parameters is detected between the observations. We have also analysed several short observations of the source with Swift/XRT and detected only a few per cent variation in flux around a mean value of 3.5 x 10(-11) erg cm(-2) s(-1). The results indicate that SW J2000.6+3210 is a member of persistent Be X-ray binaries which have the same broad characteristics as this source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pulsar IGR J16393-4643 belongs to a class of highly absorbed supergiant high-mass X-ray binaries (HMXBs), characterized by a very high column density of absorbing matter. We present the results of simultaneous broad-band pulsation and spectrum analysis from a 44-ks Suzaku observation of the source. The orbital intensity profile created with the Swift Burst Alert Telescope (Swift-BAT) light curve shows an indication of IGR J16393-4643 being an eclipsing system with a short eclipse semi-angle theta(E) similar to 17 degrees. For a supergiant companion star with a 20-R-circle dot radius, this implies an inclination of the orbital plane in the range 39 degrees-57 degrees, whereas for a main-sequence B star as the companion with a 10-R-circle dot radius, the inclination of the orbital plane is in the range 60 degrees-77 degrees. Pulse profiles created for different energy bands have complex morphology, which shows some energy dependence and increases in pulse fraction with energy. We have also investigated broad-band spectral characteristics, phase-averaged spectra and resolving the pulse phase into peak and trough phases. The phase-averaged spectrum has a very high N-H(similar to 3 x 10(23) cm(-2)) and is described by a power law (Gamma similar to 0.9) with a high-energy cut-off above 20 keV. We find a change in the spectral index in the peak and trough phases, implying an underlying change in the source spectrum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compute the instantaneous contributions to the spherical harmonic modes of gravitational waveforms from compact binary systems in general orbits up to the third post-Newtonian (PN) order. We further extend these results for compact binaries in quasielliptical orbits using the 3PN quasi-Keplerian representation of the conserved dynamics of compact binaries in eccentric orbits. Using the multipolar post-Minkowskian formalism, starting from the different mass and current-type multipole moments, we compute the spin-weighted spherical harmonic decomposition of the instantaneous part of the gravitational waveform. These are terms which are functions of the retarded time and do not depend on the history of the binary evolution. Together with the hereditary part, which depends on the binary's dynamical history, these waveforms form the basis for construction of accurate templates for the detection of gravitational wave signals from binaries moving in quasielliptical orbits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The AM CVn systems are a rare class of ultra-compact astrophysical binaries. With orbital periods of under an hour and as short as five minutes, they are among the closest known binary star systems and their evolution has direct relevance to the type Ia supernova rate and the white dwarf binary population. However, their faint and rare nature has made population studies of these systems difficult and several studies have found conflicting results.

I undertook a survey for AM CVn systems using the Palomar Transient Factory (PTF) astrophysical synoptic survey by exploiting the "outbursts" these systems undergo. Such events result in an increase in luminosity by a factor of up to two-hundred and are detectable in time-domain photometric data of AM CVn systems. My search resulted in the discovery of eight new systems, over 20% of the current known population. More importantly, this search was done in a systematic fashion, which allows for a population study properly accounting for biases.

Apart from the discovery of new systems, I used the time-domain data from the PTF and other synoptic surveys to better understand the long-term behavior of these systems. This analysis of the photometric behavior of the majority of known AM CVn systems has shown changes in their behavior at longer time scales than have previously been observed. This has allowed me to find relationships between the outburst properties of an individual system and its orbital period.

Even more importantly, the systematically selected sample together with these properties have allowed me to conduct a population study of the AM CVn systems. I have shown that the latest published estimates of the AM CVn system population, a factor of fifty below theoretical estimates, are consistent with the sample of systems presented here. This is particularly noteworthy since my population study is most sensitive to a different orbital period regime than earlier surveys. This confirmation of the population density will allow the AM CVn systems population to be used in the study of other areas of astrophysics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computational general relativity is a field of study which has reached maturity only within the last decade. This thesis details several studies that elucidate phenomena related to the coalescence of compact object binaries. Chapters 2 and 3 recounts work towards developing new analytical tools for visualizing and reasoning about dynamics in strongly curved spacetimes. In both studies, the results employ analogies with the classical theory of electricity and magnitism, first (Ch. 2) in the post-Newtonian approximation to general relativity and then (Ch. 3) in full general relativity though in the absence of matter sources. In Chapter 4, we examine the topological structure of absolute event horizons during binary black hole merger simulations conducted with the SpEC code. Chapter 6 reports on the progress of the SpEC code in simulating the coalescence of neutron star-neutron star binaries, while Chapter 7 tests the effects of various numerical gauge conditions on the robustness of black hole formation from stellar collapse in SpEC. In Chapter 5, we examine the nature of pseudospectral expansions of non-smooth functions motivated by the need to simulate the stellar surface in Chapters 6 and 7. In Chapter 8, we study how thermal effects in the nuclear equation of state effect the equilibria and stability of hypermassive neutron stars. Chapter 9 presents supplements to the work in Chapter 8, including an examination of the stability question raised in Chapter 8 in greater mathematical detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the quest to develop viable designs for third-generation optical interferometric gravitational-wave detectors, one strategy is to monitor the relative momentum or speed of the test-mass mirrors, rather than monitoring their relative position. The most straightforward design for a speed-meter interferometer that accomplishes this is described and analyzed in Chapter 2. This design (due to Braginsky, Gorodetsky, Khalili, and Thorne) is analogous to a microwave-cavity speed meter conceived by Braginsky and Khalili. A mathematical mapping between the microwave speed meter and the optical interferometric speed meter is developed and used to show (in accord with the speed being a quantum nondemolition observable) that in principle the interferometric speed meter can beat the gravitational-wave standard quantum limit (SQL) by an arbitrarily large amount, over an arbitrarily wide range of frequencies . However, in practice, to reach or beat the SQL, this specific speed meter requires exorbitantly high input light power. The physical reason for this is explored, along with other issues such as constraints on performance due to optical dissipation.

Chapter 3 proposes a more sophisticated version of a speed meter. This new design requires only a modest input power and appears to be a fully practical candidate for third-generation LIGO. It can beat the SQL (the approximate sensitivity of second-generation LIGO interferometers) over a broad range of frequencies (~ 10 to 100 Hz in practice) by a factor h/hSQL ~ √W^(SQL)_(circ)/Wcirc. Here Wcirc is the light power circulating in the interferometer arms and WSQL ≃ 800 kW is the circulating power required to beat the SQL at 100 Hz (the LIGO-II power). If squeezed vacuum (with a power-squeeze factor e-2R) is injected into the interferometer's output port, the SQL can be beat with a much reduced laser power: h/hSQL ~ √W^(SQL)_(circ)/Wcirce-2R. For realistic parameters (e-2R ≃ 10 and Wcirc ≃ 800 to 2000 kW), the SQL can be beat by a factor ~ 3 to 4 from 10 to 100 Hz. [However, as the power increases in these expressions, the speed meter becomes more narrow band; additional power and re-optimization of some parameters are required to maintain the wide band.] By performing frequency-dependent homodyne detection on the output (with the aid of two kilometer-scale filter cavities), one can markedly improve the interferometer's sensitivity at frequencies above 100 Hz.

Chapters 2 and 3 are part of an ongoing effort to develop a practical variant of an interferometric speed meter and to combine the speed meter concept with other ideas to yield a promising third- generation interferometric gravitational-wave detector that entails low laser power.

Chapter 4 is a contribution to the foundations for analyzing sources of gravitational waves for LIGO. Specifically, it presents an analysis of the tidal work done on a self-gravitating body (e.g., a neutron star or black hole) in an external tidal field (e.g., that of a binary companion). The change in the mass-energy of the body as a result of the tidal work, or "tidal heating," is analyzed using the Landau-Lifshitz pseudotensor and the local asymptotic rest frame of the body. It is shown that the work done on the body is gauge invariant, while the body-tidal-field interaction energy contained within the body's local asymptotic rest frame is gauge dependent. This is analogous to Newtonian theory, where the interaction energy is shown to depend on how one localizes gravitational energy, but the work done on the body is independent of that localization. These conclusions play a role in analyses, by others, of the dynamics and stability of the inspiraling neutron-star binaries whose gravitational waves are likely to be seen and studied by LIGO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fast radio bursts (FRBs), a novel type of radio pulse, whose physics is not yet understood at all. Only a handful of FRBs had been detected when we started this project. Taking account of the scant observations, we put physical constraints on FRBs. We excluded proposals of a galactic origin for their extraordinarily high dispersion measures (DM), in particular stellar coronas and HII regions. Therefore our work supports an extragalactic origin for FRBs. We show that the resolved scattering tail of FRB 110220 is unlikely to be due to propagation through the intergalactic plasma. Instead the scattering is probably caused by the interstellar medium in the FRB's host galaxy, and indicates that this burst sits in the central region of that galaxy. Pulse durations of order $\ms$ constrain source sizes of FRBs implying enormous brightness temperatures and thus coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period. When we worked on FRBs, it was unclear whether they were genuine astronomical signals as distinct from `perytons', clearly terrestrial radio bursts, sharing some common properties with FRBs. Recently, in April 2015, astronomers discovered that perytons were emitted by microwave ovens. Radio chirps similar to FRBs were emitted when their doors opened while they were still heating. Evidence for the astronomical nature of FRBs has strengthened since our paper was published. Some bursts have been found to show linear and circular polarizations and Faraday rotation of the linear polarization has also been detected. I hope to resume working on FRBs in the near future. But after we completed our FRB paper, I decided to pause this project because of the lack of observational constraints.

The pulsar triple system, J0733+1715, has its orbital parameters fitted to high accuracy owing to the precise timing of the central $\ms$ pulsar. The two orbits are highly hierarchical, namely $P_{\mathrm{orb,1}}\ll P_{\mathrm{orb,2}}$, where 1 and 2 label the inner and outer white dwarf (WD) companions respectively. Moreover, their orbital planes almost coincide, providing a unique opportunity to study secular interaction associated purely with eccentricity beyond the solar system. Secular interaction only involves effect averaged over many orbits. Thus each companion can be represented by an elliptical wire with its mass distributed inversely proportional to its local orbital speed. Generally there exists a mutual torque, which vanishes only when their apsidal lines are parallel or anti-parallel. To maintain either mode, the eccentricity ratio, $e_1/e_2$, must be of the proper value, so that both apsidal lines precess together. For J0733+1715, $e_1\ll e_2$ for the parallel mode, while $e_1\gg e_2$ for the anti-parallel one. We show that the former precesses $\sim 10$ times slower than the latter. Currently the system is dominated by the parallel mode. Although only a little anti-parallel mode survives, both eccentricities especially $e_1$ oscillate on $\sim 10^3\yr$ timescale. Detectable changes would occur within $\sim 1\yr$. We demonstrate that the anti-parallel mode gets damped $\sim 10^4$ times faster than its parallel brother by any dissipative process diminishing $e_1$. If it is the tidal damping in the inner WD, we proceed to estimate its tidal quantity parameter ($Q$) to be $\sim 10^6$, which was poorly constrained by observations. However, tidal damping may also happen during the preceding low-mass X-ray binary (LMXB) phase or hydrogen thermal nuclear flashes. But, in both cases, the inner companion fills its Roche lobe and probably suffers mass/angular momentum loss, which might cause $e_1$ to grow rather than decay.

Several pairs of solar system satellites occupy mean motion resonances (MMRs). We divide these into two groups according to their proximity to exact resonance. Proximity is measured by the existence of a separatrix in phase space. MMRs between Io-Europa, Europa-Ganymede and Enceladus-Dione are too distant from exact resonance for a separatrix to appear. A separatrix is present only in the phase spaces of the Mimas-Tethys and Titan-Hyperion MMRs and their resonant arguments are the only ones to exhibit substantial librations. When a separatrix is present, tidal damping of eccentricity or inclination excites overstable librations that can lead to passage through resonance on the damping timescale. However, after investigation, we conclude that the librations in the Mimas-Tethys and Titan-Hyperion MMRs are fossils and do not result from overstability.

Rubble piles are common in the solar system. Monolithic elements touch their neighbors in small localized areas. Voids occupy a significant fraction of the volume. In a fluid-free environment, heat cannot conduct through voids; only radiation can transfer energy across them. We model the effective thermal conductivity of a rubble pile and show that it is proportional the square root of the pressure, $P$, for $P\leq \epsy^3\mu$ where $\epsy$ is the material's yield strain and $\mu$ its shear modulus. Our model provides an excellent fit to the depth dependence of the thermal conductivity in the top $140\,\mathrm{cm}$ of the lunar regolith. It also offers an explanation for the low thermal inertias of rocky asteroids and icy satellites. Lastly, we discuss how rubble piles slow down the cooling of small bodies such as asteroids.

Electromagnetic (EM) follow-up observations of gravitational wave (GW) events will help shed light on the nature of the sources, and more can be learned if the EM follow-ups can start as soon as the GW event becomes observable. In this paper, we propose a computationally efficient time-domain algorithm capable of detecting gravitational waves (GWs) from coalescing binaries of compact objects with nearly zero time delay. In case when the signal is strong enough, our algorithm also has the flexibility to trigger EM observation {\it before} the merger. The key to the efficiency of our algorithm arises from the use of chains of so-called Infinite Impulse Response (IIR) filters, which filter time-series data recursively. Computational cost is further reduced by a template interpolation technique that requires filtering to be done only for a much coarser template bank than otherwise required to sufficiently recover optimal signal-to-noise ratio. Towards future detectors with sensitivity extending to lower frequencies, our algorithm's computational cost is shown to increase rather insignificantly compared to the conventional time-domain correlation method. Moreover, at latencies of less than hundreds to thousands of seconds, this method is expected to be computationally more efficient than the straightforward frequency-domain method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[ES]Con el objetivo de crear un entorno de desarrollo que permita la ejecución de aplicaciones de control en sistemas ARM, se utilizarán diferentes métodos y recursos informáticos y poder crear con esto un Toolchain capaz de generar binarios para los sistemas citados anteriormente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Com base no debate sobre diferença, o estudo analisa o modo como a questão da religiosidade é significada e tratada nas práticas escolares. Abordando religião como processo de construção cultural, vale dizer, de significação discursiva que se desenvolve no âmbito de relações de poder, o estudo busca compreender os espaços que diferentes manifestações religiosas ocupam no ambiente escolar; como as disputas hegemônicas por significação acontecem e quais são as práticas de afirmação e silenciamento das diferenças religiosas na escola. A pesquisa traz a contribuição de Stuart Hall para a compreensão de cultura numa dimensão intercultural para além dos binarismos fixos estruturalistas. Analisa os processos de negociação da diferença a partir da abordagem de Chantal Mouffe sobre constituição do social; consenso conflituoso e democracia agonística, o que possibilita descolar as identidades da rigidez suposta ou imposta pela polaridade nós-outros construída no pensamento universalista. Uma importante referência, ainda, advém da conceituação nomeada de inculturação das religiões de Joanildo Burity. Dessa forma, procura refletir sobre processos educacionais orientados pela perspectiva pedagógica proposta por Aura Helena Ramos, segundo a qual a Educação em Direitos Humanos tem como referência a constituição de espaços de manifestação do dissenso, de negociação da diferença e de produção curricular, o que indica uma abordagem que se contrapõe a processos de silenciosamente de códigos culturais da hegemonia religiosa cristã ocidental.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soft X-ray transients (SXTs) are a subgroup of low-mass X-ray binaries consisting of a neutron star or a black hole and a companion low-mass star. SXTs exhibit a sudden outburst by increasing the luminosity from ∼ 1033 to ∼ 1036−38ergs1. After spending a few months in outburst, SXTs switch back to quiescence. Optical study of the binary system during the quiescence state of SXTs provides an opportunity to discriminate between BH binaries and neutron star binaries. The first part ot this research is composed of result of 10 years joint project between Hubble space telescope and Chandra, to study SXTs in M31. The other part of this thesis focused on the light curve of bright SXTs in M31. Disc irradiation is thought to be capable of explaining the global behaviour of the light curves of SXTs. Depending on the strength of the central X-ray emission in irradiating the disc, the light curve may exhibit an exponential or a linear decay. The model predicts that in brighter transients a transition from exponential decline to a linear one may be detectable. In this study, having excluded super-soft sources and hard X-ray transients, a sample of bright SXTs in M31 (Lpeak > 1038ergs1) has been studied. The expected change in the shape of the decay function is only observed in two of the light curves from the six light curves in the sample. Also, a systematic correlation between the shape of the light curve and the X-ray luminosity has not been seen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatives to Planetary Nebulae, such as barium stars or symbiotic systems, can shed light on the connection between Planetary Nebulae and binarity. Because of the observational selection effects against direct spectroscopic detection of binary PNe cores with orbital periods longer than a few dozen days, at present these "awkward relatives" are a critical source of our knowledge about the binary PNe population at longer periods. Below a few examples are discussed, posing constraints on the attempts to model nebula, ejection process in a binary. © 2006 International Astronomical Union.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We attempt to construct a unified evolutionary scheme that includes post-AGB systems, barium stars, symbiotics and related systems, explaining their similarities as well as their differences. Special attention is given to the comparison of the barium pollution and symbiotic phenomena. Finally, we outline a 'transient torus' evolutionary scenario that makes use of the various observational and theoretical hints and aims at explaining the observed characteristics of the relevant systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

info:eu-repo/semantics/published