956 resultados para Bifurcation To Chaos


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We develop a unified model to explain the dynamics of driven one dimensional ribbon for materials with strain and magnetic order parameters. We show that the model equations in their most general form explain several results on driven magnetostrictive metallic glass ribbons such as the period doubling route to chaos as a function of a dc magnetic field in the presence of a sinusoidal field, the quasiperiodic route to chaos as a function of the sinusoidal field for a fixed dc field, and induced and suppressed chaos in the presence of an additional low amplitude near resonant sinusoidal field. We also investigate the influence of a low amplitude near resonant field on the period doubling route. The model equations also exhibit symmetry restoring crisis with an exponent close to unity. The model can be adopted to explain certain results on magnetoelastic beam and martensitic ribbon under sinusoidal driving conditions. In the latter case, we find interesting dynamics of a periodic one orbit switching between two equivalent wells as a function of an ac magnetic field that eventually makes a direct transition to chaos under resonant driving condition. The model is also applicable to magnetomartensites and materials with two order parameters. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4790845]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Experimental studies and atomistic simulations have shown that brittle metallic glasses fail by a cavitation mechanism whose origin has been traced to the presence of intrinsic atomic density fluctuations which give rise to weak zones with reduced yield strength. It has been shown recently through continuum analysis that the presence of these zones can lower the cavitation stress considerably under equibiaxial loading. The objective of the present work is to study the effect of the applied stress state on the cavitation behavior of such a heterogeneous plastic solid with distributed weak zones. To this end, 2D plane strain finite element simulations are performed by subjecting a unit cell containing a weak zone to different (biaxiality) stress ratios. The volume fraction and yield strength of the weak zone are varied over a wide range. The results show that unlike in a homogeneous plastic solid, the cavitation stress of the heterogeneous aggregate does not reduce appreciably as the stress ratio decreases from unity when the yield strength of the weak zone is low. It is found that a non-dimensional parameter characterizing the stress state prevailing in the weak zone and its yield properties uniquely control the cavitation stress. The nature of cavitation bifurcation may change from unstable bifurcation to the left at sufficiently low stress ratio to one involving snap cavitation at high stress ratio. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is shown that in a Karman vortex street flow, particle size influences the dilute particle dispersion. Together with an increase of the particle size, there is an emergence of a period-doubling bifurcation to a chaotic orbit, as well as a decrease of the corresponding basins of attraction. A crisis leads the attractor to escape from the central region of flow. In the motion of dilute particles, a drag term and gravity term dominate and result in a bifurcation phenomenon.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new species of Allocreadium, Allocreadium danjiangensis n. sp., is described from the intestine of several species of freshwater fish, including Abbottina rivularis (Basilewsky, 1855), Sarcocheilichthys nigripinnis nigripinns (Gunther, 1873), Gnathopogon argentatus (Sauvage et Dabry 1874), Opsariichthys uncirostris bidens (Gunther, 1873), and Erythroculter mongolicus mongolicus (Basilewsky, 1855) (Cyprinidae) from the Danjiangkou Reservoir in central China. The main morphological characters of the new species are as follows: vitelline follicles numerous, extending from the level of acetabulum to posterior extremity, distributed over both sides around the ceca; cirrus sac relatively large, developed, lying obliquely anterior to the acetabulum, extending from the level of the intestinal bifurcation to the central level of acetabulum, and overlapping left or right cecal; and ovary much smaller than testes, generally close to or even overlapping the anterior border of anterior testis. Observation by scanning electron microscopy shows only 2 kinds of tegumental formations, i.e., papillae and tubercles, instead of 3 types of tegumental formations, i.e., papillae, bosses, and minute sensor receptors observed on other species of the Allocreadiidae. The tegumental striations of the present species vary on the different parts of the body. In addition, a new structure, identified as the "groove" with a tonguelike tubercle, was observed on the inner wall of acetabulum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study experimentally explored the fine structures of the successive period-doubling bifurcations of the time-dependent thermocapillary convection in a floating half zone of 10 cSt silicone oil with the diameter d (0)=3.00 mm and the aspect ratio A=l/d (0)=0.72 in terrestrial conditions. The onset of time-dependent thermocapillary convection predominated in this experimental configuration and its subsequent evolution were experimentally detected through the local temperature measurements. The experimental results revealed a sequence of period-doubling bifurcations of the time-dependent thermocapillary convection, similar in some way to one of the routes to chaos for buoyant natural convection. The critical frequencies and the corresponding fractal frequencies were extracted through the real-time analysis of the frequency spectra by Fast-Fourier-Transformation (FFT). The projections of the trajectory onto the reconstructed phase-space were also provided. Furthermore, the experimentally predicted Feigenbaum constants were quite close to the theoretical asymptotic value of 4.669 [Feigenbaum M J. Phys Lett A, 1979, 74: 375-378].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Animal locomotion is a complex process, involving the central pattern generators (neural networks, located in the spinal cord, that produce rhythmic patterns), the brainstem command systems, the steering and posture control systems and the top layer structures that decide which motor primitive is activated at a given time. Pinto and Golubitsky studied an integer CPG model for legs rhythms in bipeds. It is a four-coupled identical oscillators' network with dihedral symmetry. This paper considers a new complex order central pattern generator (CPG) model for locomotion in bipeds. A complex derivative Dα±jβ, with α, β ∈ ℜ+, j = √-1, is a generalization of the concept of an integer derivative, where α = 1, β = 0. Parameter regions where periodic solutions, identified with legs' rhythms in bipeds, occur, are analyzed. Also observed is the variation of the amplitude and period of periodic solutions with the complex order derivative.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the peculiar dynamical features of a fractional derivative of complex-order network. The network is composed of two unidirectional rings of cells, coupled through a "buffer" cell. The network has a Z3 × Z5 cyclic symmetry group. The complex derivative Dα±jβ, with α, β ∈ R+ is a generalization of the concept of integer order derivative, where α = 1, β = 0. Each cell is modeled by the Chen oscillator. Numerical simulations of the coupled cell system associated with the network expose patterns such as equilibria, periodic orbits, relaxation oscillations, quasiperiodic motion, and chaos, in one or in two rings of cells. In addition, fixing β = 0.8, we perceive differences in the qualitative behavior of the system, as the parameter c ∈ [13, 24] of the Chen oscillator and/or the real part of the fractional derivative, α ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, are varied. Some patterns produced by the coupled system are constrained by the network architecture, but other features are only understood in the light of the internal dynamics of each cell, in this case, the Chen oscillator. What is more important, architecture and/or internal dynamics?

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nonlinear dynamics has emerged into a prominent area of research in the past few Decades.Turbulence, Pattern formation,Multistability etc are some of the important areas of research in nonlinear dynamics apart from the study of chaos.Chaos refers to the complex evolution of a deterministic system, which is highly sensitive to initial conditions. The study of chaos theory started in the modern sense with the investigations of Edward Lorentz in mid 60's. Later developments in this subject provided systematic development of chaos theory as a science of deterministic but complex and unpredictable dynamical systems. This thesis deals with the effect of random fluctuations with its associated characteristic timescales on chaos and synchronization. Here we introduce the concept of noise, and two familiar types of noise are discussed. The classifications and representation of white and colored noise are introduced. Based on this we introduce the concept of randomness that we deal with as a variant of the familiar concept of noise. The dynamical systems introduced are the Rossler system, directly modulated semiconductor lasers and the Harmonic oscillator. The directly modulated semiconductor laser being not a much familiar dynamical system, we have included a detailed introduction to its relevance in Chaotic encryption based cryptography in communication. We show that the effect of a fluctuating parameter mismatch on synchronization is to destroy the synchronization. Further we show that the relation between synchronization error and timescales can be found empirically but there are also cases where this is not possible. Studies show that under the variation of the parameters, the system becomes chaotic, which appears to be the period doubling route to chaos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We establish numerically the validity of Huberman-Rudnick scaling relation for Lyapunov exponents during the period doubling route to chaos in one dimensional maps. We extend our studies to the context of a combination map. where the scaling index is found to be different.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We discuss how the presence of frustration brings about irregular behaviour in a pendulum with nonlinear dissipation. Here frustration arises owing to particular choice of the dissipation. A preliminary numerical analysis is presented which indicates the transition to chaos at low frequencies of the driving force.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of simple chaotic maps for non-equilibrium processes in statistical physics has been one of the central themes in the theory of chaotic dynamical systems. Recently, many works have been carried out on deterministic diffusion in spatially extended one-dimensional maps This can be related to real physical systems such as Josephson junctions in the presence of microwave radiation and parametrically driven oscillators. Transport due to chaos is an important problem in Hamiltonian dynamics also. A recent approach is to evaluate the exact diffusion coefficient in terms of the periodic orbits of the system in the form of cycle expansions. But the fact is that the chaotic motion in such spatially extended maps has two complementary aspects- - diffusion and interrnittency. These are related to the time evolution of the probability density function which is approximately Gaussian by central limit theorem. It is noticed that the characteristic function method introduced by Fujisaka and his co-workers is a very powerful tool for analysing both these aspects of chaotic motion. The theory based on characteristic function actually provides a thermodynamic formalism for chaotic systems It can be applied to other types of chaos-induced diffusion also, such as the one arising in statistics of trajectory separation. It was noted that there is a close connection between cycle expansion technique and characteristic function method. It was found that this connection can be exploited to enhance the applicability of the cycle expansion technique. In this way, we found that cycle expansion can be used to analyse the probability density function in chaotic maps. In our research studies we have successfully applied the characteristic function method and cycle expansion technique for analysing some chaotic maps. We introduced in this connection, two classes of chaotic maps with variable shape by generalizing two types of maps well known in literature.