963 resultados para Best-response
Resumo:
The growth response, feed conversion ratio and cost benefits of hybrid catfish, Heterobranchus longifilis x Clarias gariepinus fed five maggot meal based diets were evaluated for 56 days in outdoor concrete tanks. Twenty-five fingerlings of the hybrid fish were stocked in ten outdoor concrete tanks of dimension 1.2mx0.13mx0.18m and code MM sub(1)-MM sub(5) in relation to their diet name. Five isonitrogenous and isocaloric maggot meal based diets namely MM sub(1)-0% maggot meal, MM sub(2)-25% maggot meal, MM sub(3)-50% maggot meal, MM sub(4-)75% maggot meal and MM sub(5-) 100% maggot meal were used for the experiment. The higher the proportion of maggot in the meal, the higher the ether extract and crude fiber. No significance difference P>0.05 exists between ash content of the experimental diets. Diet MM sub(2) had the best growth performance and highest MGR with a significant difference P<0.05 with other diets fed fish. No significance differences P>0.05 exists between the growth parameters for diets MM sub(1), MM sub(3), and MM sub(4). A positive correlation (r=1.0) exists (P<0.05, 0.25) between the growth parameters for the different experimental diets. Highest correlation r super(2)=0.9981 exists P<0.05 between MGR within the treatments. However, there no significant (P>0.05) difference in expenditure but there is between the profit indices and incidence of cost between the trials. MM sub(2) has the best yield cost and net profit. Without any reservation, inclusion of maggot based meal diet is recommended as feed of hybrid catfish to 75% inclusion for growth and profit incidence
Resumo:
Hematological effects of feeding varying dietary crude proteins levels to one hundred and fifty (150) H.longifilis fingerlings was examined on biweekly basis. The fingerlings of mean weights 1.26g plus or minus 0.24g were stocked in eight hapa nets (1mx1m) at 15 fingerlings per hapa. Four experimental diets with crude protein; 35%, 40%, 45% and 50% coded diet 1-4 respectively were fed to the fish for 8 weeks. The blood sample was taken and examined for packed cell volume (PCV) total protein (TP) Hemoglobin (Hb), Serum album, Erythrocyte count (RBC), while blood cell (WBC) mean corpuscle volume (MCV) and mean corpuscle hemoglobin, concentration (MCHC). There was an increase in the values of the hematological indices studied with increase in protein inclusion levels. A higher positive correlation with no significant difference (P greater than or equal to 0.05) exists between the treatments RBC, WBC, Hb and TP. The best RBC (2.10x10 super(6) count/l). WBC (7.65x10 super(4) count/l), PCV (35.4%) and Hb (5.79mg/l) were presented in fingerlings fed 40% crude protein followed by 45% crude protein. The dietary crude protein of 40% is recommended for H. longifilis for sound and healthy condition
Resumo:
Type I interferon (IFN) exerts its pleiotropic effects mainly through the JAK-STAT signaling pathway, which is presently best described in mammals. By subtractive suppression hybridization, two fish signaling factors, JAK1 and STAT1, had been identified in the IFN-induced crucian carp Carassius auratus L. blastulae embryonic (CAB) cells after treatment with UV-inactivated grass carp hemorrhagic virus (GCHV). Further, the full-length cDNA of STAT1, termed CaSTAT1, was obtained. It contains 2926 bp and encodes a protein of 718 aa. CaSTAT1 is most similar to rat STAT1 with 59% identity overall and displays all highly conserved domains that the STAT family possesses. Like human STAT1beta, it lacks the C-terminus acting as transcriptional activation domain in mammals. By contrast, only a single transcript was detected in virus-induced CAB cells. Expression analysis showed that CaSTAT1 could be activated by stimulation of CAB cells with poly I:C, active GCHV, UV-inactivated GCHV or CAB IFN, and displayed diverse expression patterns similar to that of mammalian STATI. Additionally, the expression of an antiviral gene CaMx1 was also induced under the same conditions, and expression difference between CaSTAT1 and CaMx1 was revealed by induction of CAB IFN. These results provide molecular evidence supporting the notion that the fish IFN signaling transduction pathway is similar to that in mammals. Fish IFN exerts its multiple functions, at least antiviral action, through a JAK-STAT pathway. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Garrod, Brian, Leask, Anna and Fyall, Alan (2007) An assessment of ?international best practice? in visitor attraction management: does Scotland really lag behind? International Journal of Tourism Research, 9 (1), 21-42. RAE2008
Resumo:
Wetland restoration is a commonly used approach to reduce nutrient loading to freshwater and coastal ecosystems, with many wetland restoration efforts occurring in former agricultural fields. Restored wetlands are expected to be effective at retaining or removing both nitrogen and phosphorus (P), yet restoring wetland hydrology to former agricultural fields can lead to the release of legacy fertilizer P. Here, we examined P cycling and export following rewetting of the Timberlake Restoration Project, a 440 ha restored riverine wetland complex in the coastal plain of North Carolina. We also compared P cycling within the restored wetland to two minimally disturbed nearby wetlands and an adjacent active agricultural field. In the restored wetland we observed increased soluble reactive phosphorus (SRP) concentrations following initial flooding, consistent with our expectations that P bound to iron would be released under reducing conditions. SRP concentrations in spring were 2.5 times higher leaving the restored wetland than a forested wetland and an agricultural field. During two large-scale drawdown and rewetting experiments we decreased the water depth by 1 m in ∼10 ha of inundated wetland for 2 weeks, followed by reflooding. Rewetting following experimental drainage had no effect on SRP concentrations in winter, but SRP concentrations did increase when the experiment was repeated during summer. Our best estimates suggest that this restored wetland could release legacy fertilizer P for up to a decade following hydrologic restoration. The time lag between restoration and biogeochemical recovery should be incorporated into management strategies of restored wetlands. Copyright 2010 by the American Geophysical Union.
Resumo:
Analysis of non-traditional Variable Stiffness (VS) laminates, obtained by steering the fiber orientation as a spatial function of location, have shown to improve buckling load carrying capacity of flat rectangular panels under axial compressive loads. In some cases the buckling load of simply supported panels doubled compared to the best conventional laminate with straight fibers. Two distinct cases of stiffness variation, one due to fiber orientation variation in the direction of the loading, and the other one perpendicular to the loading direction, were identified as possible contributors to the buckling load improvements. In the first case, the increase was attributed to the favorable distribution of the transverse in-plane stresses over the panel platform. In the second case, a higher degree of improvement was obtained due to the re-distribution of the applied in-plane loads. Experimental results, however, showed substantially higher levels of buckling load improvements compared with theoretical predictions. The additional improvement was determined to be due to residual stresses introduced during curing of the laminates. The present paper provides a simplified thermomechanical analysis of residual stress state of variable stiffness laminates. Systematic parametric analyses of both cases of fiber orientation variations show that, indeed much higher buckling loads could result from the residual stresses present in such laminates.
Resumo:
Background: The lack of access to good quality palliative care for people with intellectual disabilities is highlighted in the international literature. In response, more partnership practice in end-of-life care is proposed.
Aim: This study aimed to develop a best practice model to guide and promote partnership practice between specialist palliative care and intellectual disability services.
Design: A mixed methods research design involving two phases was used, underpinned by a conceptual model for partnership practice.
Setting/participants: Phase 1 involved scoping end-of-life care to people with intellectual disability, based on self-completed questionnaires. In all, 47 of 66 (71.2%) services responded. In Phase 2, semi-structured interviews were undertaken with a purposive sample recruited of 30 health and social care professionals working in intellectual disability and palliative care services, who had provided palliative care to someone with intellectual disability. For both phases, data were collected from primary and secondary care in one region of the United Kingdom.
Results: In Phase 1, examples of good practice were apparent. However, partnership practice was infrequent and unmet educational needs were identified. Four themes emerged from the interviews in Phase 2: challenges and issues in end-of-life care, sharing and learning, supporting and empowering and partnership in practice.
Conclusion: Joint working and learning between intellectual disability and specialist palliative care were seen as key and fundamental. A framework for partnership practice between both services has been developed which could have international applicability and should be explored with other services in end-of-life care.
Resumo:
For physicians facing patients with organ-limited metastases from colorectal cancer, tumor shrinkage and sterilization of micrometastatic disease is the main goal, giving the opportunity for secondary surgical resection. At the same time, for the majority of patients who will not achieve a sufficient tumor response, disease control remains the predominant objective. Since FOLFOX or FOLFIRI have similar efficacies, the challenge is to define which could be the most effective targeted agent (anti-EGFR or anti-VEGF) to reach these goals. Therefore, a priori molecular identification of patients that could benefit from anti-EGFR or anti-VEGF monoclonal antibodies (i.e. the currently approved targeted therapies for metastatic colorectal cancer) is of critical importance. In this setting, the KRAS mutation status was the first identified predictive marker of response to anti-EGFR therapy. Since it has been demonstrated that tumors with KRAS mutation do not respond to anti-EGFR therapy, KRAS status must be determined prior to treatment. Thus, for KRAS wild-type patients, the choices that remain are either anti-VEGF or anti-EGFR. In this review, we present the most updated data from translational research programs dealing with the identification of biomarkers for response to targeted therapies.
Resumo:
This paper discusses the use of primary frequency response metrics to assess the dynamics of frequency disturbance data with the presence of high system non synchronous penetration (SNSP) and system inertia variation. The Irish power system has been chosen as a study case as it experiences a significant level of SNSP from wind turbine generation and imported active power from HVDC interconnectors. Several recorded actual frequency disturbances were used in the analysis. These data were measured and collected from the Irish power system from October 2010 to June 2013. The paper has shown the impact of system inertia and SNSP variation on the performance of primary frequency response metrics, namely: nadir frequency, rate of change of frequency, inertial and primary frequency response.
Resumo:
The main scope of this work was to evaluate the metabolic effects of anticancer agents (three conventional and one new) in osteosarcoma (OS) cells and osteoblasts, by measuring alterations in the metabolic profile of cells by nuclear magnetic resonance (NMR) spectroscopy metabolomics. Chapter 1 gives a theoretical framework of this work, beginning with the main metabolic characteristics that globally describe cancer as well as the families and mechanisms of action of drugs used in chemotherapy. The drugs used nowadays to treat OS are also presented, together with the Palladium(II) complex with spermine, Pd2Spm, potentially active against cancer. Then, the global strategy for cell metabolomics is explained and the state of the art of metabolomic studies that analyze the effect of anticancer agents in cells is presented. In Chapter 2, the fundamentals of the analytical techniques used in this work, namely for biological assays, NMR spectroscopy and multivariate and statistical analysis of the results are described. A detailed description of the experimental procedures adopted throughout this work is given in Chapter 3. The biological and analytical reproducibility of the metabolic profile of MG-63 cells by high resolution magic angle spinning (HRMAS) NMR is evaluated in Chapter 4. The metabolic impact of several factors (cellular integrity, spinning rate, temperature, time and acquisition parameters) on the 1H HRMAS NMR spectral profile and quality is analysed, enabling the definition of the best acquisition parameters for further experiments. The metabolic consequences of increasing number of passages in MG-63 cells as well as the duration of storage are also investigated. Chapter 5 describes the metabolic impact of drugs conventionally used in OS chemotherapy, through NMR metabolomics studies of lysed cells and aqueous extracts analysis. The results show that MG-63 cells treated with cisplatin (cDDP) undergo a strong up-regulation of lipid contents, alterations in phospholipid constituents (choline compounds) and biomarkers of DNA degradation, all associated with cell death by apoptosis. Cells exposed to doxorubicin (DOX) or methotrexate (MTX) showed much slighter metabolic changes, without any relevant alteration in lipid contents. However, metabolic changes associated with altered Krebs cycle, oxidative stress and nucleotides metabolism were detected and were tentatively interpreted at the light of the known mechanisms of action of these drugs. The metabolic impact of the exposure of MG-63 cells and osteoblasts to cDDP and the Pd2Spm complex is described in Chapter 6. Results show that, despite the ability of the two agents to bind DNA, the metabolic consequences that arise from exposure to them are distinct, namely in what concerns to variation in lipid contents (absent for Pd2Spm). Apoptosis detection assays showed that, differently from what was seen for MG-63 cells treated with cDDP, the decreased number of living cells upon exposure to Pd2Spm was not due to cell death by apoptosis or necrosis. Moreover, the latter agent induces more marked alterations in osteoblasts than in cancer cells, while the opposite seemed to occur upon cDDP exposure. Nevertheless, the results from MG-63 cells exposure to combination regimens with cDDP- or Pd2Spm-based cocktails, described in Chapter 7, revealed that, in combination, the two agents induce similar metabolic responses, arising from synergy mechanisms between the tested drugs. Finally, the main conclusions of this thesis are summarized in Chapter 8, and future perspectives in the light of this work are presented.
Resumo:
This manuscript analyses the data generated by a Zero Length Column (ZLC) diffusion experimental set-up, for 1,3 Di-isopropyl benzene in a 100% alumina matrix with variable particle size. The time evolution of the phenomena resembles those of fractional order systems, namely those with a fast initial transient followed by long and slow tails. The experimental measurements are best fitted with the Harris model revealing a power law behavior.
Resumo:
The ecotoxicological response of the living organisms in an aquatic system depends on the physical, chemical and bacteriological variables, as well as the interactions between them. An important challenge to scientists is to understand the interaction and behaviour of factors involved in a multidimensional process such as the ecotoxicological response.With this aim, multiple linear regression (MLR) and principal component regression were applied to the ecotoxicity bioassay response of Chlorella vulgaris and Vibrio fischeri in water collected at seven sites of Leça river during five monitoring campaigns (February, May, June, August and September of 2006). The river water characterization included the analysis of 22 physicochemical and 3 microbiological parameters. The model that best fitted the data was MLR, which shows: (i) a negative correlation with dissolved organic carbon, zinc and manganese, and a positive one with turbidity and arsenic, regarding C. vulgaris toxic response; (ii) a negative correlation with conductivity and turbidity and a positive one with phosphorus, hardness, iron, mercury, arsenic and faecal coliforms, concerning V. fischeri toxic response. This integrated assessment may allow the evaluation of the effect of future pollution abatement measures over the water quality of Leça River.
Resumo:
Background: Therapy of chronic hepatitis C (CHC) with pegIFNa/ribavirin achieves sustained virologic response (SVR) in ~55%. Pre-activation of the endogenous interferon system in the liver is associated non-response (NR). Recently, genome-wide association studies described associations of allelic variants near the IL28B (IFNλ3) gene with treatment response and with spontaneous clearance of the virus. We investigated if the IL28B genotype determines the constitutive expression of IFN stimulated genes (ISGs) in the liver of patients with CHC. Methods: We genotyped 93 patients with CHC for 3 IL28B single nucleotide polymorphisms (SNPs, rs12979860, rs8099917, rs12980275), extracted RNA from their liver biopsies and quantified the expression of IL28B and of 8 previously identified classifier genes which discriminate between SVR and NR (IFI44L, RSAD2, ISG15, IFI22, LAMP3, OAS3, LGALS3BP and HTATIP2). Decision tree ensembles in the form of a random forest classifier were used to calculate the relative predictive power of these different variables in a multivariate analysis. Results: The minor IL28B allele (bad risk for treatment response) was significantly associated with increased expression of ISGs, and, unexpectedly, with decreased expression of IL28B. Stratification of the patients into SVR and NR revealed that ISG expression was conditionally independent from the IL28B genotype, i.e. there was an increased expression of ISGs in NR compared to SVR irrespective of the IL28B genotype. The random forest feature score (RFFS) identified IFI27 (RFFS = 2.93), RSAD2 (1.88) and HTATIP2 (1.50) expression and the HCV genotype (1.62) as the strongest predictors of treatment response. ROC curves of the IL28B SNPs showed an AUC of 0.66 with an error rate (ERR) of 0.38. A classifier with the 3 best classifying genes showed an excellent test performance with an AUC of 0.94 and ERR of 0.15. The addition of IL28B genotype information did not improve the predictive power of the 3-gene classifier. Conclusions: IL28B genotype and hepatic ISG expression are conditionally independent predictors of treatment response in CHC. There is no direct link between altered IFNλ3 expression and pre-activation of the endogenous system in the liver. Hepatic ISG expression is by far the better predictor for treatment response than IL28B genotype.
Resumo:
Summary The best described physiological function of low-density lipoproteins (LDL) is to transport cholesterol to target tissues. LDL deliver their cholesterol cargo to cells following their interaction with the LDL receptor. LDL, when their vascular concentrations increase, have also been implicated in pathologies such as atherosclerosis. Among the cell types that are found in blood vessels, endothelial and smooth muscle cells have dominated cellular research on atherosclerotic mechanisms and LDL activation of signaling pathways, while very little is known about adventitial fibroblast activation caused by elevated lipoprotein levels. Since fibroblasts participate in wound repair and since it has recently been recognized that fibroblasts may play pivotal roles in vascular remodeling and repair of injury, we assessed whether lipoproteins affect fibroblast function. We have found that LDL specifically mediate the activation of a class of mitogen-activated protein kinases (MAPKs): the p38 MAPKs. The activation of this pathway in turn modulates cell shape by promoting lamellipodia formation and extensive cell spreading. This is of particular interest because it provides a mechanism by which LDL can promote wound healing or vessel wall remodeling as observed during the development of atherosclerosis. In order to understand the molecular mechanisms by which LDL induce p38 activation we searched for the component in the LDL particle responsible for the induction of this pathway. We found that cholesterol is the major component of lipoprotein particles that mediates their ability to stimulate the p38 MAPK pathway. Furthermore, we investigated the cellular mechanisms underlying the ability of LDL to induce cell shape changes and whether this could participate in wound repair. Our recent data demonstrates that the capacity of LDL to induce fibroblast spreading relies on their ability to stimulate IL-8 secretion, which in turn leads to accelerated wound healing. LDL-induced IL-8 production and subsequent wound closure are impaired upon inhibition of the p38 MAPK pathway indicating that the LDL-induced spreading and accelerated wound sealing rely on the ability of LDL to stimulate IL-8 secretion in a p38 MAPK-dependent manner. Therefore, regulation of fibroblast shape and migration by lipoproteins may be relevant to atherosclerosis that is characterized by increased LDL-cholesterol levels, IL-8 production and extensive remodeling of the vessel wall. Résumé: La fonction physiologique des lipoprotéines à faible densité (LDL) la mieux décrite est celle du transport du cholestérol aux tissus cibles. Les LDL livrent leur cargaison de cholestérol aux cellules après leur interaction avec le récepteur au LDL. Une concentration vasculaire des LDL augmenté est également impliquée dans le développement de l'athérosclérose. Parmi les types de cellule présents dans les vaisseaux sanguins, les cellules endothéliales et les cellules du muscle lisse ont dominé la recherche cellulaire sur les mécanismes athérosclérotiques et sur l'activation par les LDL des voies de signalisation intracellulaire. A l'inverse peu de choses sont connues sur l'activation des fibroblastes de l'adventice par les lipoprotéines. Puisqu'il a été récemment reconnu que les fibroblastes peuvent jouer un rôle central dans la remodélisation vasculaire et la réparation tissulaire, nous avons étudié si les lipoprotéines affectent la fonction des fibroblastes. Nous avons constaté que les LDL activent spécifiquement une classe de protéines kinases: les p38 MAPK (mitogen-activated protein kinases). L'activation de cette voie module à son tour la forme de la cellule en favorisant la formation de lamellipodes et l'agrandissement des cellules. Cela a un intérêt particulier car il fournit un mécanisme par lequel les LDL peuvent promouvoir la cicatrisation ou la remodélisation des parois vasculaires comme observés lors du développement de l'athérosclérose. Pour comprendre les mécanismes moléculaires par lesquels les LDL provoquent l'activation des p38 MAPK, nous avons cherché à identifier les composants dans la particule de LDL responsables de l'induction de cette voie. Nous avons constaté que le cholestérol est l'élément principal des particules de lipoprotéine qui contrôle leur capacité à stimuler la voie des p38 MAPK. En outre, nous avons examiné les mécanismes cellulaires responsables de la capacité des LDL à induire des changements dans la forme des cellules. Nos données récentes démontrent que la capacité des LDL à induire l'agrandissement des cellules, ainsi que leur aptitude à favoriser la cicatrisation, reposant sur leur capacité à stimuler la sécrétiond'IL-8. La production d'IL-8 induite par les LDL est bloquée par l'inhibition de la voie p38 MAPK, ce qui indique que l'étalement des cellules induit par les LDL ainsi que l'accélération de la cicatrisation sont liés à la capacité des LDL à stimuler la sécrétion d'IL8 via l'activation des p38 MAPK. La régulation de la forme et de la migration des fibroblastes par les lipoprotéines peuvent donc participer au développement de l'athérosclérose qui est caractérisée par l'augmentation des niveaux de production de LDL-cholestérol et d'IL-8 ainsi que par une remodélisation augmentée de la paroi du vaisseau.
Resumo:
Deux tiers des cancers du sein expriment des récepteurs hormonaux ostrogéniques (tumeur ER-positive) et la croissance de ces tumeurs est stimulée par l’estrogène. Des traitements adjuvant avec des anti-estrogènes, tel que le Tamoxifen et les Inhibiteurs de l’Aromatase peuvent améliorer la survie des patientes atteinte de cancer du sein. Toutefois la thérapie hormonale n’est pas efficace dans toutes les tumeurs mammaires ER-positives. Les tumeurs peuvent présenter avec une résistance intrinsèque ou acquise au Tamoxifen. Présentement, c’est impossible de prédire quelle patiente va bénéficier ou non du Tamoxifen. Des études préliminaires du laboratoire de Dr. Mader, ont identifié le niveau d’expression de 20 gènes, qui peuvent prédire la réponse thérapeutique au Tamoxifen (survie sans récidive). Ces marqueurs, identifié en utilisant une analyse bioinformatique de bases de données publiques de profils d’expression des gènes, sont capables de discriminer quelles patientes vont mieux répondre au Tamoxifen. Le but principal de cette étude est de développer un outil de PCR qui peut évaluer le niveau d’expression de ces 20 gènes prédictif et de tester cette signature de 20 gènes dans une étude rétrospective, en utilisant des tumeurs de cancer du sein en bloc de paraffine, de patients avec une histoire médicale connue. Cet outil aurait donc un impact direct dans la pratique clinique. Des traitements futiles pourraient être éviter et l’indentification de tumeurs ER+ avec peu de chance de répondre à un traitement anti-estrogène amélioré. En conséquence, de la recherche plus appropriée pour les tumeurs résistantes au Tamoxifen, pourront se faire.