925 resultados para Bergmanns Rule
Resumo:
Theoretical and computational frameworks for synaptic plasticity and learning have a long and cherished history, with few parallels within the well-established literature for plasticity of voltage-gated ion channels. In this study, we derive rules for plasticity in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and assess the synergy between synaptic and HCN channel plasticity in establishing stability during synaptic learning. To do this, we employ a conductance-based model for the hippocampal pyramidal neuron, and incorporate synaptic plasticity through the well-established Bienenstock-Cooper-Munro (BCM)-like rule for synaptic plasticity, wherein the direction and strength of the plasticity is dependent on the concentration of calcium influx. Under this framework, we derive a rule for HCN channel plasticity to establish homeostasis in synaptically-driven firing rate, and incorporate such plasticity into our model. In demonstrating that this rule for HCN channel plasticity helps maintain firing rate homeostasis after bidirectional synaptic plasticity, we observe a linear relationship between synaptic plasticity and HCN channel plasticity for maintaining firing rate homeostasis. Motivated by this linear relationship, we derive a calcium-dependent rule for HCN-channel plasticity, and demonstrate that firing rate homeostasis is maintained in the face of synaptic plasticity when moderate and high levels of cytosolic calcium influx induced depression and potentiation of the HCN-channel conductance, respectively. Additionally, we show that such synergy between synaptic and HCN-channel plasticity enhances the stability of synaptic learning through metaplasticity in the BCM-like synaptic plasticity profile. Finally, we demonstrate that the synergistic interaction between synaptic and HCN-channel plasticity preserves robustness of information transfer across the neuron under a rate-coding schema. Our results establish specific physiological roles for experimentally observed plasticity in HCN channels accompanying synaptic plasticity in hippocampal neurons, and uncover potential links between HCN-channel plasticity and calcium influx, dynamic gain control and stable synaptic learning.
Resumo:
In the underlay mode of cognitive radio, secondary users are allowed to transmit when the primary is transmitting, but under tight interference constraints that protect the primary. However, these constraints limit the secondary system performance. Antenna selection (AS)-based multiple antenna techniques, which exploit spatial diversity with less hardware, help improve secondary system performance. We develop a novel and optimal transmit AS rule that minimizes the symbol error probability (SEP) of an average interference-constrained multiple-input-single-output secondary system that operates in the underlay mode. We show that the optimal rule is a non-linear function of the power gain of the channel from the secondary transmit antenna to the primary receiver and from the secondary transmit antenna to the secondary receive antenna. We also propose a simpler, tractable variant of the optimal rule that performs as well as the optimal rule. We then analyze its SEP with L transmit antennas, and extensively benchmark it with several heuristic selection rules proposed in the literature. We also enhance these rules in order to provide a fair comparison, and derive new expressions for their SEPs. The results bring out new inter-relationships between the various rules, and show that the optimal rule can significantly reduce the SEP.
Resumo:
In many systems, nucleation of a stable solid may occur in the presence of other (often more than one) metastable phases. These may be polymorphic solids or even liquid phases. Sometimes, the metastable phase might have a lower free energy minimum than the liquid but higher than the stable-solid-phase minimum and have characteristics in between the parent liquid and the globally stable solid phase. In such cases, nucleation of the solid phase from the melt may be facilitated by the metastable phase because the latter can ``wet'' the interface between the parent and the daughter phases, even though there may be no signature of the existence of metastable phase in the thermodynamic properties of the parent liquid and the stable solid phase. Straightforward application of classical nucleation theory (CNT) is flawed here as it overestimates the nucleation barrier because surface tension is overestimated (by neglecting the metastable phases of intermediate order) while the thermodynamic free energy gap between daughter and parent phases remains unchanged. In this work, we discuss a density functional theory (DFT)-based statistical mechanical approach to explore and quantify such facilitation. We construct a simple order-parameter-dependent free energy surface that we then use in DFT to calculate (i) the order parameter profile, (ii) the overall nucleation free energy barrier, and (iii) the surface tension between the parent liquid and the metastable solid and also parent liquid and stable solid phases. The theory indeed finds that the nucleation free energy barrier can decrease significantly in the presence of wetting. This approach can provide a microscopic explanation of the Ostwald step rule and the well-known phenomenon of ``disappearing polymorphs'' that depends on temperature and other thermodynamic conditions. Theory reveals a diverse scenario for phase transformation kinetics, some of which may be explored via modem nanoscopic synthetic methods.
Resumo:
The influence of the flow rule on the bearing capacity of strip foundations placed on sand was investigated using a new kinematic approach of upper-bound limit analysis. The method of stress characteristics was first used to find the mechanism of the failure and to compute the stress field by using the Mohr-Coulomb yield criterion. Once the failure mechanism had been established, the kinematics of the plastic deformation was established, based on the requirements of the upper-bound limit theorem. Both associated and nonassociated plastic flows were considered, and the bearing capacity was obtained by equating the rate of external plastic work to the rate of the internal energy dissipation for both smooth and rough base foundations. The results obtained from the analysis were compared with those available from the literature. (C) 2014 American Society of Civil Engineers.
Resumo:
The correlation clustering problem is a fundamental problem in both theory and practice, and it involves identifying clusters of objects in a data set based on their similarity. A traditional modeling of this question as a graph theoretic problem involves associating vertices with data points and indicating similarity by adjacency. Clusters then correspond to cliques in the graph. The resulting optimization problem, Cluster Editing (and several variants) are very well-studied algorithmically. In many situations, however, translating clusters to cliques can be somewhat restrictive. A more flexible notion would be that of a structure where the vertices are mutually ``not too far apart'', without necessarily being adjacent. One such generalization is realized by structures called s-clubs, which are graphs of diameter at most s. In this work, we study the question of finding a set of at most k edges whose removal leaves us with a graph whose components are s-clubs. Recently, it has been shown that unless Exponential Time Hypothesis fail (ETH) fails Cluster Editing (whose components are 1-clubs) does not admit sub-exponential time algorithm STACS, 2013]. That is, there is no algorithm solving the problem in time 2 degrees((k))n(O(1)). However, surprisingly they show that when the number of cliques in the output graph is restricted to d, then the problem can be solved in time O(2(O(root dk)) + m + n). We show that this sub-exponential time algorithm for the fixed number of cliques is rather an exception than a rule. Our first result shows that assuming the ETH, there is no algorithm solving the s-Club Cluster Edge Deletion problem in time 2 degrees((k))n(O(1)). We show, further, that even the problem of deleting edges to obtain a graph with d s-clubs cannot be solved in time 2 degrees((k))n(O)(1) for any fixed s, d >= 2. This is a radical contrast from the situation established for cliques, where sub-exponential algorithms are known.
Resumo:
The trapezoidal rule, which is a special case of the Newmark family of algorithms, is one of the most widely used methods for transient hyperbolic problems. In this work, we show that this rule conserves linear and angular momenta and energy in the case of undamped linear elastodynamics problems, and an ``energy-like measure'' in the case of undamped acoustic problems. These conservation properties, thus, provide a rational basis for using this algorithm. In linear elastodynamics problems, variants of the trapezoidal rule that incorporate ``high-frequency'' dissipation are often used, since the higher frequencies, which are not approximated properly by the standard displacement-based approach, often result in unphysical behavior. Instead of modifying the trapezoidal algorithm, we propose using a hybrid finite element framework for constructing the stiffness matrix. Hybrid finite elements, which are based on a two-field variational formulation involving displacement and stresses, are known to approximate the eigenvalues much more accurately than the standard displacement-based approach, thereby either bypassing or reducing the need for high-frequency dissipation. We show this by means of several examples, where we compare the numerical solutions obtained using the displacement-based and hybrid approaches against analytical solutions.
Resumo:
The disclosure of information and its misuse in Privacy Preserving Data Mining (PPDM) systems is a concern to the parties involved. In PPDM systems data is available amongst multiple parties collaborating to achieve cumulative mining accuracy. The vertically partitioned data available with the parties involved cannot provide accurate mining results when compared to the collaborative mining results. To overcome the privacy issue in data disclosure this paper describes a Key Distribution-Less Privacy Preserving Data Mining (KDLPPDM) system in which the publication of local association rules generated by the parties is published. The association rules are securely combined to form the combined rule set using the Commutative RSA algorithm. The combined rule sets established are used to classify or mine the data. The results discussed in this paper compare the accuracy of the rules generated using the C4. 5 based KDLPPDM system and the CS. 0 based KDLPPDM system using receiver operating characteristics curves (ROC).
Resumo:
Using polydispersity index as an additional order parameter we investigate freezing/melting transition of Lennard-Jones polydisperse systems (with Gaussian polydispersity in size), especially to gain insight into the origin of the terminal polydispersity. The average inherent structure (IS) energy and root mean square displacement (RMSD) of the solid before melting both exhibit quite similar polydispersity dependence including a discontinuity at solid-liquid transition point. Lindemann ratio, obtained from RMSD, is found to be dependent on temperature. At a given number density, there exists a value of polydispersity index (delta (P)) above which no crystalline solid is stable. This transition value of polydispersity(termed as transition polydispersity, delta (P) ) is found to depend strongly on temperature, a feature missed in hard sphere model systems. Additionally, for a particular temperature when number density is increased, delta (P) shifts to higher values. This temperature and number density dependent value of delta (P) saturates surprisingly to a value which is found to be nearly the same for all temperatures, known as terminal polydispersity (delta (TP)). This value (delta (TP) similar to 0.11) is in excellent agreement with the experimental value of 0.12, but differs from hard sphere transition where this limiting value is only 0.048. Terminal polydispersity (delta (TP)) thus has a quasiuniversal character. Interestingly, the bifurcation diagram obtained from non-linear integral equation theories of freezing seems to provide an explanation of the existence of unique terminal polydispersity in polydisperse systems. Global bond orientational order parameter is calculated to obtain further insights into mechanism for melting.
Resumo:
Resumen: Este artículo considera la identificación de los reyes en los epitomes de la Dinastía XIII de Manetón, y su función en las tradiciones historiográficas del antiguo Egipto. A pesar del rechazo de larga data de la Dinastía XXIII de Manetón como ahistórica, aquí se argumenta que los nombres preservados en la Dinastía XIII son parte de una auténtica tradición historiografíca originada con el rey kushita Taharka. El artículo va aún más allá para sugerir razones específicas de por qué la Dinastía XIII fue integrada con otras tradiciones de listas reales, así como una reconstrucción histórica de tal proceso. Más aún, éste análisis identifica funciones específicas para los nombres que aún no han sido identificados, Psammus y Zet, en la versión de Julio Africano del epitome de Manetón. El argumento considera la perspectiva política y cultural de los reyes kushitas que eran responsables de una rama de la tradición de la lista de reyes y ofrece algunas interpretaciones de las prácticas reales kushitas a la luz de estas conclusiones.
Resumo:
El trabajo aborda el gobierno de las instituciones como una alternativa superadora del activismo judicial producto de la visión neoconstitucionalista del orden social.
Resumo:
This paper uses a structural approach based on the indirect inference principle to estimate a standard version of the new Keynesian monetary (NKM) model augmented with term structure using both revised and real-time data. The estimation results show that the term spread and policy inertia are both important determinants of the U.S. estimated monetary policy rule whereas the persistence of shocks plays a small but significant role when revised and real-time data of output and inflation are both considered. More importantly, the relative importance of term spread and persistent shocks in the policy rule and the shock transmission mechanism drastically change when it is taken into account that real-time data are not well behaved.
Resumo:
Published as an article in: Spanish Economic Review, 2008, vol. 10, issue 4, pages 251-277.
Resumo:
Using US data for the period 1967:5-2002:4, this paper empirically investigates the performance of an augmented version of the Taylor rule (ATR) that (i) allows for the presence of switching regimes, (ii) considers the long-short term spread in addition to the typical variables, (iii) uses an alternative monthly indicator of general economic activity suggested by Stock and Watson (1999), and (iv) considers interest rate smoothing. The estimation results show the existence of switching regimes, one characterized by low volatility and the other by high volatility. Moreover, the scale of the responses of the Federal funds rate to movements in the term spread, inflation and the economic activity index depend on the regime. The estimation results also show robust empirical evidence that the ATR has been more stable during the term of office of Chairman Greenspan than in the pre-Greenspan period. However, a closer look at the Greenspan period shows the existence of two alternative regimes and that the response of the Fed funds rate to inflation has not been significant during this period once the term spread is considered.