207 resultados para Beet
Resumo:
An improved understanding of soil organic carbon (Corg) dynamics in interaction with the mechanisms of soil structure formation is important in terms of sustainable agriculture and reduction of environmental costs of agricultural ecosystems. However, information on physical and chemical processes influencing formation and stabilization of water stable aggregates in association with Corg sequestration is scarce. Long term soil experiments are important in evaluating open questions about management induced effects on soil Corg dynamics in interaction with soil structure formation. The objectives of the present thesis were: (i) to determine the long term impacts of different tillage treatments on the interaction between macro aggregation (>250 µm) and light fraction (LF) distribution and on C sequestration in plots differing in soil texture and climatic conditions. (ii) to determine the impact of different tillage treatments on temporal changes in the size distribution of water stable aggregates and on macro aggregate turnover. (iii) to evaluate the macro aggregate rebuilding in soils with varying initial Corg contents, organic matter (OM) amendments and clay contents in a short term incubation experiment. Soil samples were taken in 0-5 cm, 5-25 cm and 25-40 cm depth from up to four commercially used fields located in arable loess regions of eastern and southern Germany after 18-25 years of different tillage treatments with almost identical experimental setups per site. At each site, one large field with spatially homogenous soil properties was divided into three plots. One of the following three tillage treatments was carried in each plot: (i) Conventional tillage (CT) with annual mouldboard ploughing to 25-30 cm (ii) mulch tillage (MT) with a cultivator or disc harrow 10-15 cm deep, and (iii) no tillage (NT) with direct drilling. The crop rotation at each site consisted of sugar beet (Beta vulgaris L.) - winter wheat (Triticum aestivum L.) - winter wheat. Crop residues were left on the field and crop management was carried out following the regional standards of agricultural practice. To investigate the above mentioned research objectives, three experiments were conducted: Experiment (i) was performed with soils sampled from four sites in April 2010 (wheat stand). Experiment (ii) was conducted with soils sampled from three sites in April 2010, September 2011 (after harvest or sugar beet stand), November 2011 (after tillage) and April 2012 (bare soil or wheat stand). An incubation study (experiment (iii)) was performed with soil sampled from one site in April 2010. Based on the aforementioned research objectives and experiments the main findings were: (i) Consistent results were found between the four long term tillage fields, varying in texture and climatic conditions. Correlation analysis of the yields of macro aggregate against the yields of free LF ( ≤1.8 g cm-3) and occluded LF, respectively, suggested that the effective litter translocation in higher soil depths and higher litter input under CT and MT compensated in the long term the higher physical impact by tillage equipment than under NT. The Corg stocks (kg Corg m−2) in 522 kg soil, based on the equivalent soil mass approach (CT: 0–40 cm, MT: 0–38 cm, NT: 0–36 cm) increased in the order CT (5.2) = NT (5.2) < MT (5.7). Significantly (p ≤ 0.05) highest Corg stocks under MT were probably a result of high crop yields in combination with reduced physical tillage impact and effective litter incorporation, resulting in a Corg sequestration rate of 31 g C-2 m-2 yr-1. (ii) Significantly higher yields of macro aggregates (g kg-2 soil) under NT (732-777) and MT (680-726) than under CT (542-631) were generally restricted to the 0-5 cm sampling depth for all sampling dates. Temporal changes on aggregate size distribution were only small and no tillage induced net effect was detectable. Thus, we assume that the physical impact by tillage equipment was only small or the impact was compensated by a higher soil mixing and effective litter translocation into higher soil depths under CT, which probably resulted in a high re aggregation. (iii) The short term incubation study showed that macro aggregate yields (g kg-2 soil) were higher after 28 days in soils receiving OM (121.4-363.0) than in the control soils (22.0-52.0), accompanied by higher contents of microbial biomass carbon and ergosterol. Highest soil respiration rates after OM amendments within the first three days of incubation indicated that macro aggregate formation is a fast process. Most of the rebuilt macro aggregates were formed within the first seven days of incubation (42-75%). Nevertheless, it was ongoing throughout the entire 28 days of incubation, which was indicated by higher soil respiration rates at the end of the incubation period in OM amended soils than in the control soils. At the same time, decreasing carbon contents within macro aggregates over time indicated that newly occluded OM within the rebuilt macro aggregates served as Corg source for microbial biomass. The different clay contents played only minor role in macro aggregate formation under the particular conditions of the incubation study. Overall, no net changes on macro aggregation were identified in the short term. Furthermore, no indications for an effective Corg sequestration on the long term under NT in comparison to CT were found. The interaction of soil disturbance, litter distribution and the fast re aggregation suggested that a distinct steady state per tillage treatment in terms of soil aggregation was established. However, continuous application of MT with a combination of reduced physical tillage impact and effective litter incorporation may offer some potential in improving the soil structure and may therefore prevent incorporated LF from rapid decomposition and result in a higher C sequestration on the long term.
Resumo:
Im Rahmen der vorliegenden Arbeit wird ein Verfahren vorgestellt und untersucht, mit welchem Früchte annähernd verlustfrei und unter sehr hygienischen Bedingungen geschnitten werden können. Die Produkte – hier gezeigt am Beispiel von Äpfeln und Melonen – werden mit einem Hochdruckwasserstrahl geschnitten, der durch ein bildverarbeitendes System entsprechend der Anatomie der Frucht geführt werden kann. Die Vorteile dieses Verfahrens sind die individuelle Schnittführung, die Materialverluste minimiert und die Tatsache, dass die Frucht ohne wesentlichen Eingriff von Personal bearbeitet wird. Die Literaturauswertung ergab, dass diese Technologie bislang noch nicht bearbeitet wurde. Der Einsatz des Hochdruckwasserstrahlschneidens im Bereich der Agrartechnik beschränkte sich auf das Schneiden von Zuckerrüben Brüser [2008], Ligocki [2005] bzw. Kartoffeln Becker u. Gray [1992], das Zerteilen von Fleisch Bansal u. Walker [1999] und Fisch Lobash u. a. [1990] sowie die Nutzung von Wasserstrahlen im Zusammenhang mit der Injektion von Flüssigdünger in Ackerböden Niemoeller u. a. [2011]. Ziel dieser Arbeit war es daher, die Einsatzmöglichkeiten des Wasserstrahlschneidens zu erfassen und zu bewerten. Dazu wurden in einer Vielzahl von Einzelversuchen die Zusammenhänge zwischen den Prozessparametern wie Wasserdruck, Düsendurchmesser, Vorschubgeschwindigkeit und Düsenabstand auf das Schnittergebnis, also die Rauheit der entstehenden Schnittfläche untersucht. Ein Vergleich mit konventionellen Schneidemethoden erfolgte hinsichtlich der Schnittergebnisse und der Auswirkungen des Wasserstrahlschneidens auf nachfolgende Verfahrensschritte, wie dem Trocknen.
Resumo:
It has been successfully demonstrated, using epidermis explants of sugar beet (Beta vulgaris L.), that stomatal guard cells retain full totipotent capacity. Despite having one of the highest degrees of morphological adaptation and a unique physiological specialization, it is possible to induce a re-expression of full (embryogenic) genetic potential in these cells in situ by reversing their highly differentiated nature to produce regenerated plants via a callus stage. The importance of these findings both to stomatal research and to our understanding of cytodifferentiation in plants is discussed.
Resumo:
An optimized protocol has been developed for the efficient and rapid genetic modification of sugar beet (Beta vulgaris L.). A polyethylene glycol-mediated DNA transformation technique could be applied to protoplast populations enriched specifically for a single totipotent cell type derived from stomatal guard cells, to achieve high transformation frequencies. Bialaphos resistance, conferred by the pat gene, produced a highly efficient selection system. The majority of plants were obtained within 8 to 9 weeks and were appropriate for plant breeding purposes. All were resistant to glufosinate-ammonium-based herbicides. Detailed genomic characterization has verified transgene integration, and progeny analysis showed Mendelian inheritance.
Resumo:
Seeds of 39 seed lots of a total of twelve different crops were stored hermetically in a wide range of air-dry environments (2-25% moisture content at 0-50 degrees C), viability assessed periodically, and the seed viability equation constants estimated. Within a species, estimates of the constants which quantify absolute longevity (K-E) and the relative effects on longevity of moisture content (C-W) and temperature (C-H and C-Q) did not differ (P >0.05 to P >0.25) among lots. Comparison among the 12 crops provided variant estimates of K-E and C-W (P< 0.01), but common values of C-H and C-Q (0.0322 and 0.000454, respectively, P >0.25). Maize (Zea mays) provided the greatest estimate of K-E (9.993, s.e.= 0.456), followed by sorghum (Sorghum bicolor) (9.381, s.e. 0.428), pearl millet (Pennisetum typhoides) (9.336, s.e.= 0.408), sugar beet (Beta vulgaris) (8.988, s.e.= 0.387), African rice (Oryza glaberrima) (8.786, s.e.= 0.484), wheat (Triticum aestivum) (8.498, s.e.= 0.431), foxtail millet (Setaria italica) (8.478, s.e.= 0.396), sugarcane (Saccharum sp.) (8.454, s.e.= 0.545), finger millet (Eleusine coracana) (8.288, s.e.= 0.392), kodo millet (Paspalum scrobiculatum) (8.138, s.e.= 0.418), rice (Oryza sativa) (8.096, s.e.= 0.416) and potato (Solanum tuberosum) (8.037, s.e.= 0.397). Similarly, estimates of C-W were ranked maize (5.993, s.e.= 0.392), pearl millet (5.540, s.e.= 0.348), sorghum (5.379, s.e.=0.365), potato (5.152, s.e.= 0.347), sugar beet (4.969, s.e.= 0.328), sugar cane (4.964, s.e.= 0.518), foxtail millet (4.829, s.e.= 0.339), wheat (4.836, s.e.= 0.366), African rice (4.727, s.e.= 0.416), kodo millet (4.435, s.e.= 0.360), finger millet (4.345, s.e.= 0.336) and rice (4.246, s.e.= 0.355). The application of these constants to long-term seed storage is discussed.
Resumo:
Cells of the bacterial symbiont Xenorhabdus nematophila from the entomopathogenic nematode, Steinernema carpocapsae entered the pupae of Plutella xylostella after 15 minutes treatment with suspensions containing the bacterial cells. Secretions of Xenorhabdus nematophila, in either broth or water, were found lethal to the pupae of P. xylostella when applied in moist sand. The bacterial symbiont Xenorhabdus nematophila was found lethal to the pupae of greater wax moth (Galleria mellonella), beet armyworm (Spodoptera exigua), diamondback moth (Plutella xylostella) and black vine weevil (Otiorhynchus sulcatus) in the absence of the nematode vector and the cells of X. nematophila entered the haemocoele of the pupae.
Resumo:
The Euro-Mediterranean region is an important centre for the diversity of crop wild relatives. Crops, such as oats (Avena sativa), sugar beet (Beta vulgaris), apple (Malus domestica), annual meadow grass (Festuca pratensis), white clover (Trifolium repens), arnica (Arnica montana), asparagus (Asparagus officinalis), lettuce (Lactuca sativa), and sage (Salvia officinalis) etc., all have wild relatives in the region. The European Community funded project, PGR Forum (www.pgrforum.org) is building an online information system to provide access to crop wild relative data to a broad user community; including plant breeders, protected area managers, policy-makers, conservationists, taxonomists and the wider public. The system will include data on uses, geographical distribution, biology, population and habitat information, threats (including IUCN Red List assessments) and conservation actions. This information is vital for the continued sustainable utilisation and conservation of crop wild relatives. Two major databases have been utilised as the backbone to a Euro-Mediterranean crop wild relative catalogue, which forms the core of the information system: Euro+Med PlantBase (www.euromed.org.uk) and Mansfeld’s World Database of Agricultural and Horticultural Crops (http://mansfeld.ipk-gatersleben.de). By matching the genera found within the two databases, a preliminary list of crop wild relatives has been produced. Around 20,000 of the 30,000+ species listed in Euro+Med PlantBase can be considered crop wild relatives, i.e. those species found within the same genus as a crop. The list is currently being refined by implementing a priority ranking system based on the degree of relatedness of taxa to the associated crop.
Resumo:
Investigations were conducted during the 2003, 2004 and 2005 growing seasons in northern Greece to evaluate effects of tillage regime (mouldboard plough, chisel plough and rotary tiller), cropping sequence (continuous cotton, cotton-sugar beet rotation and continuous tobacco) and herbicide treatment on weed seedbank dynamics. Amaranthus spp. and Portulaca oleracea were the most abundant species, ranging from 76% to 89% of total weed seeds found in 0-15 and 15-30 cm soil depths during the 3 years. With the mouldboard plough, 48% and 52% of the weed seedbank was found in the 0-15 and 15-30 cm soil horizons, while approximately 60% was concentrated in the upper 15 cm soil horizon for chisel plough and rotary tillage. Mouldboard ploughing significantly buried more Echinochloa crus-galli seeds in the 15-30 cm soil horizon compared with the other tillage regimes. Total seedbank (0-30 cm) of P. oleracea was significantly reduced in cotton-sugar beet rotation compared with cotton and tobacco monocultures, while the opposite occurred for E. crus-galli. Total seed densities of most annual broad-leaved weed species (Amaranthus spp., P. oleracea, Solanum nigrum) and E. crus-galli were lower in herbicide treated than in untreated plots. The results suggest that in light textured soils, conventional tillage with herbicide use gradually reduces seed density of small seeded weed species in the top 15 cm over several years. In contrast, crop rotation with the early established sugar beet favours spring-germinating grass weed species, but also prevents establishment of summer-germinating weed species by the early developing crop canopy.
Resumo:
Plants may be regenerated from stomatal cells or protoplasts of such cells. Prior to regeneration the cells or protoplasts may be genetically transformed by the introduction of hereditary material most preferably by a DNA construct which is free of genes which specify resistance to antibiotics. The regeneration step may include callus formation on a hormone-free medium. The method is particularly suitable for sugar beet.
Resumo:
International Perspective The development of GM technology continues to expand into increasing numbers of crops and conferred traits. Inevitably, the focus remains on the major field crops of soybean, maize, cotton, oilseed rape and potato with introduced genes conferring herbicide tolerance and/or pest resistance. Although there are comparatively few GM crops that have been commercialised to date, GM versions of 172 plant species have been grown in field trials in 31 countries. European Crops with Containment Issues Of the 20 main crops in the EU there are four for which GM varieties are commercially available (cotton, maize for animal feed and forage, and oilseed rape). Fourteen have GM varieties in field trials (bread wheat, barley, durum wheat, sunflower, oats, potatoes, sugar beet, grapes, alfalfa, olives, field peas, clover, apples, rice) and two have GM varieties still in development (rye, triticale). Many of these crops have hybridisation potential with wild and weedy relatives in the European flora (bread wheat, barley, oilseed rape, durum wheat, oats, sugar beet and grapes), with escapes (sunflower); and all have potential to cross-pollinate fields non-GM crops. Several fodder crops, forestry trees, grasses and ornamentals have varieties in field trials and these too may hybridise with wild relatives in the European flora (alfalfa, clover, lupin, silver birch, sweet chestnut, Norway spruce, Scots pine, poplar, elm, Agrostis canina, A. stolonifera, Festuca arundinacea, Lolium perenne, L. multiflorum, statice and rose). All these crops will require containment strategies to be in place if it is deemed necessary to prevent transgene movement to wild relatives and non-GM crops. Current Containment Strategies A wide variety of GM containment strategies are currently under development, with a particular focus on crops expressing pharmaceutical products. Physical containment in greenhouses and growth rooms is suitable for some crops (tomatoes, lettuce) and for research purposes. Aquatic bioreactors of some non-crop species (algae, moss, and duckweed) expressing pharmaceutical products have been adopted by some biotechnology companies. There are obvious limitations of the scale of physical containment strategies, addressed in part by the development of large underground facilities in the US and Canada. The additional resources required to grow plants underground incurs high costs that in the long term may negate any advantage of GM for commercial productioNatural genetic containment has been adopted by some companies through the selection of either non-food/feed crops (algae, moss, duckweed) as bio-pharming platforms or organisms with no wild relatives present in the local flora (safflower in the Americas). The expression of pharmaceutical products in leafy crops (tobacco, alfalfa, lettuce, spinach) enables growth and harvesting prior to and in the absence of flowering. Transgenically controlled containment strategies range in their approach and degree of development. Plastid transformation is relatively well developed but is not suited to all traits or crops and does not offer complete containment. Male sterility is well developed across a range of plants but has limitations in its application for fruit/seed bearing crops. It has been adopted in some commercial lines of oilseed rape despite not preventing escape via seed. Conditional lethality can be used to prevent flowering or seed development following the application of a chemical inducer, but requires 100% induction of the trait and sufficient application of the inducer to all plants. Equally, inducible expression of the GM trait requires equally stringent application conditions. Such a method will contain the trait but will allow the escape of a non-functioning transgene. Seed lethality (‘terminator’ technology) is the only strategy at present that prevents transgene movement via seed, but due to public opinion against the concept it has never been trialled in the field and is no longer under commercial development. Methods to control flowering and fruit development such as apomixis and cleistogamy will prevent crop-to-wild and wild-to-crop pollination, but in nature both of these strategies are complex and leaky. None of the genes controlling these traits have as yet been identified or characterised and therefore have not been transgenically introduced into crop species. Neither of these strategies will prevent transgene escape via seed and any feral apomicts that form are arguably more likely to become invasives. Transgene mitigation reduces the fitness of initial hybrids and so prevents stable introgression of transgenes into wild populations. However, it does not prevent initial formation of hybrids or spread to non-GM crops. Such strategies could be detrimental to wild populations and have not yet been demonstrated in the field. Similarly, auxotrophy prevents persistence of escapes and hybrids containing the transgene in an uncontrolled environment, but does not prevent transgene movement from the crop. Recoverable block of function, intein trans-splicing and transgene excision all use recombinases to modify the transgene in planta either to induce expression or to prevent it. All require optimal conditions and 100% accuracy to function and none have been tested under field conditions as yet. All will contain the GM trait but all will allow some non-native DNA to escape to wild populations or to non-GM crops. There are particular issues with GM trees and grasses as both are largely undomesticated, wind pollinated and perennial, thus providing many opportunities for hybridisation. Some species of both trees and grass are also capable of vegetative propagation without sexual reproduction. There are additional concerns regarding the weedy nature of many grass species and the long-term stability of GM traits across the life span of trees. Transgene stability and conferred sterility are difficult to trial in trees as most field trials are only conducted during the juvenile phase of tree growth. Bio-pharming of pharmaceutical and industrial compounds in plants Bio-pharming of pharmaceutical and industrial compounds in plants offers an attractive alternative to mammalian-based pharmaceutical and vaccine production. Several plantbased products are already on the market (Prodigene’s avidin, β-glucuronidase, trypsin generated in GM maize; Ventria’s lactoferrin generated in GM rice). Numerous products are in clinical trials (collagen, antibodies against tooth decay and non-Hodgkin’s lymphoma from tobacco; human gastric lipase, therapeutic enzymes, dietary supplements from maize; Hepatitis B and Norwalk virus vaccines from potato; rabies vaccines from spinach; dietary supplements from Arabidopsis). The initial production platforms for plant-based pharmaceuticals were selected from conventional crops, largely because an established knowledge base already existed. Tobacco and other leafy crops such as alfalfa, lettuce and spinach are widely used as leaves can be harvested and no flowering is required. Many of these crops can be grown in contained greenhouses. Potato is also widely used and can also be grown in contained conditions. The introduction of morphological markers may aid in the recognition and traceability of crops expressing pharmaceutical products. Plant cells or plant parts may be transformed and maintained in culture to produce recombinant products in a contained environment. Plant cells in suspension or in vitro, roots, root cells and guttation fluid from leaves may be engineered to secrete proteins that may be harvested in a continuous, non-destructive manner. Most strategies in this category remain developmental and have not been commercially adopted at present. Transient expression produces GM compounds from non-GM plants via the utilisation of bacterial or viral vectors. These vectors introduce the trait into specific tissues of whole plants or plant parts, but do not insert them into the heritable genome. There are some limitations of scale and the field release of such crops will require the regulation of the vector. However, several companies have several transiently expressed products in clinical and pre-clinical trials from crops raised in physical containment.
Resumo:
We review current knowledge of the most abundant sugars, sucrose, maltose, glucose and fructose, in the world's major crop plants. The sucrose-accumulating crops, sugar beet and sugar cane, are included, but the main focus of the review is potato and the major cereal crops. The production of sucrose in photosynthesis and the inter-relationships of sucrose, glucose, fructose and other metabolites in primary carbon metabolism are described, as well as the synthesis of starch, fructan and cell wall polysaccharides and the breakdown of starch to produce maltose. The importance of sugars as hormone-like signalling molecules is discussed, including the role of another sugar, trehalose, and the trehalose biosynthetic pathway. The Maillard reaction, which occurs between reducing sugars and amino acids during thermal processing, is described because of its importance for colour and flavour in cooked foods. This reaction also leads to the formation of potentially harmful compounds, such as acrylamide, and is attracting increasing attention as food producers and regulators seek to reduce the levels of acrylamide in cooked food. Genetic and environmental factors affecting sugar concentrations are described.
Resumo:
Field experiments were conducted in northern Greece in 2003 and 2004 to evaluate effects of tillage regimes (moldboard plowing, chisel plowing, and rotary tilling), cropping sequences(continuous cotton, cotton-sugar beet rotation,and continuous tobacco) and herbicide treatments with inter-row hand hoeing on weed population densities. Total weed densities were not affected by tillage treatment except that of barnyardgrass (Echinochloa crus-galli), which increased only in moldboard plowing treated plots during 2003. Redroot pigweed (Amaranthus retroflexus)and black nightshade (Solanum nigrum) densities were reduced in continuous cotton, while purple nutsedge (Cyperus rotundus), E. crus-galli, S. nigrum, and johnsongras(Sorghum halepense) densities were reduced in tobacco. A. retroflexus and S. nigrum were effectively controlled by all herbicide treatments with inter-row hand hoeing,whereas E. crus-galli was effectively reduced by herbicides applied to cotton and tobacco. S. halepense density reduction was a result of herbicide applied to tobacco with inter-row hand hoeing. Yield of all crops was higher under moldboard plowing and herbicide treatments. Pre-sowing and pre-emergence herbicide treatments in cotton and pre-transplant in tobacco integrated with inter-row cultivation resulted in efficient control of annual weed species and good crop yields. These observations are of practical relevance to crop selection by farmers in order to maintain weed populations at economically acceptable densities through the integration of various planting dates, sustainable herbicide use and inter-row cultivation; tools of great importance in integrated weed management systems. Keywords: cropping sequence, herbicide, integrated weed management, inter-row cultivation,tillage.
Resumo:
Although no GM crops currently are licensed for commercial production in the UK, as opposition to GM crops by consumers softens, this could change quickly. Although past studies have examined attitudes of UK farmers toward GM technologies in general, there has been little work on the impact of possible coexistence measures on their attitudes toward GM crop production. This could be because the UK Government has not engaged in any public dialogue on the coexistence measures that might be applied on farms. Based on a farm survey, this article examines farmers’ attitudes toward GM technologies and planting intentions for three crops (maize, oilseed rape, and sugar beet) based on a GM availability scenario. The article then nuances this analysis with a review of farmer perceptions of the level of constraint associated with a suite of notional farm-level coexistence measures and issues, based on current European Commission guidelines and practice in other EU Member States.
Resumo:
The objective of this study was to apply response surface methodology to estimate the emulsifying capacity and stability of mixtures containing isolated and textured soybean proteins combined with pectin and to evaluate if the extrusion process affects these interfacial properties. A simplex-centroid design was applied to the model emulsifying activity index (EAI), average droplet size (D-[4.3]) and creaming inhibition (Cl%) of the mixtures. All models were significant and able to explain more than 86% of the variation. The high predictive capacity of the models was also confirmed. The mean values for EAI, D-[4.3] and Cl% observed in all assays were 0.173 +/- 0.015 mn, 19.2 +/- 1.0 mu m and 53.3 +/- 2.6%, respectively. No synergism was observed between the three compounds. This result can be attributed to the low soybean protein solubility at pH 6.2 (<35%). Pectin was the most important variable for improving all responses. The emulsifying capacity of the mixture increased 41% after extrusion. Our results showed that pectin could substitute or improve the emulsifying properties of the soybean proteins and that the extrusion brings additional advantage to interfacial properties of this combination. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Concomitantemente à produção de etanol, a partir da fermentação de diferentes matérias-primas (cana-de-açúcar, beterraba, milho, trigo, batata, mandioca), produz-se a vinhaça. A vinhaça da cana-de-açúcar é gerada na proporção média de 12 litros para cada litro de etanol. O Brasil é o maior produtor mundial de cana-de-açúcar (570 milhões de toneladas, em 2009) com a produção de 27 bilhões de litros/ano de etanol, no ciclo 2009/2010, basicamente para fins carburantes, e, portanto, a quantidade de vinhaça produzida é da ordem de 320 bilhões de litros/ano. Dentre as possíveis soluções para a destinação da vinhaça, tais como: concentração, tratamento químico e biológico ou produção de biomassa, é sua aplicação no solo a forma mais usual de disposição. No entanto, sua aplicação no solo não pode ser excessiva nem indiscriminada, sob pena de comprometer o ambiente e a rentabilidade agrícola e industrial da unidade sucroalcooleira. A necessidade de medidas de controle sobre a aplicação de vinhaça no solo do Estado de São Paulo, que concentra a produção de 60% do etanol produzido no Brasil, levou à elaboração da Norma Técnica P4.231, em 2005. A constatação do cumprimento dos itens desta Norma é uma das ações do agente fiscalizador, no monitoramento da geração e destinação da vinhaça pelos empreendimentos produtores de etanol. Os itens 5.7.1 e 5.7.2, desta Norma, tornam obrigatório o encaminhamento à CETESB (Companhia Ambiental do Estado de São Paulo), para fins de acompanhamento e fiscalização, até o dia 02 de abril de cada ano, o PAV (Plano de Aplicação de Vinhaça). Com o intuito de proporcionar melhor entendimento da Norma P4.231, contribuir para otimização de sua aplicabilidade e melhoria e perceber a realidade prática da aplicação da vinhaça, foram analisados PAVs protocolados na Agência Ambiental de Piracicaba, licenças concedidas, processos de licenciamento e realizadas vistorias a campo. Conclui-se que a Norma P4.231 representa um avanço no gerenciamento do uso da vinhaça no Estado de São Paulo, por disciplinar a disposição de vinhaça no solo, tornando obrigatórios: demarcações de áreas protegidas e núcleos populacionais, caracterização de solo e da vinhaça, doses máximas a serem aplicadas, estudos da geologia e hidrogeologia locais, monitoramento das águas subterrâneas, impermeabilização de tanques e dutos. Estabelece critérios a serem obedecidos por lei, e todos são condutas de boas práticas de proteção ao meio, que repercutem em maior rentabilidade agrícola e industrial. A Norma P4.231 é bem elaborada, complexa e extensa, o que a torna de difícil execução. Para facilitar sua aplicabilidade, sugere-se o estabelecimento de um cronograma de prioridades: impermeabilização dos tanques e dutos, drenos testemunha com funcionamento otimizado e boa caracterização do que está sendo aplicado, se vinhaça pura ou se misturada a águas residuárias. Das oito empresas deste estudo, apenas quatro (as maiores) vêm protocolando os PAVs com regularidade, desde 2005. As informações apresentadas foram incompletas e, em alguns casos, precárias. Mesmo com lacunas, os dados fornecidos, desde o início da obrigatoriedade do PAV, foram de utilidade para esboçar o perfil da atividade sucroalcooleira na região estudada.