970 resultados para Bean - Plant residues in soil - Productivity
Resumo:
Soil penetration resistance (PR) is a measure of soil compaction closely related to soil structure and plant growth. However, the variability in PR hampers the statistical analyses. This study aimed to evaluate the variability of soil PR on the efficiency of parametric and nonparametric analyses in indentifying significant effects of soil compaction and to classify the coefficient of variation of PR into low, medium, high and very high. On six dates, the PR of a typical dystrophic Red Ultisol under continuous no-tillage for 16 years was measured. Three tillage and/or traffic conditions were established with the application of: (i) no chiseling or additional traffic, (ii) additional compaction, and (iii) chiseling. On each date, the nineteen PR data (measured at every 1.5 cm to a depth of 28.5 cm) were grouped in layers with different thickness. In each layer, the treatment effects were evaluated by variance (ANOVA) and Kruskal-Wallis analyses in a completely randomized design, and the coefficients of variation of all analyses were classified (low, intermediate, high and very high). The ANOVA performed better in discriminating the compaction effects, but the rejection rate of null hypothesis decreased from 100 to 80 % when the coefficient of variation increased from 15 to 26 %. The values of 15 and 26 % were the thresholds separating the low/intermediate and the high/very high coefficient variation classes of PR in this Ultisol.
Resumo:
Nitrogen is the main limiting factor in crop productivity and thereby soil management systems may change the mineralization and nitrification rates. In an experiment on soil management systems implemented in 1988 at the experimental station Fundação ABC, Ponta Grossa, in the central South region of the State of Paraná, inorganic N dynamics were examined to find a soil management strategy with a view to a sustainable environment. The objective of this study was to calculate the net mineralization and nitrification rates of soil N and the correlation with soil pH under management systems. Randomized complete block design was used, in split plots, in three replications. The following soil management systems (SMSs) were adopted in the plots: 1) conventional tillage (CT); 2) minimum tillage (MT); 3) no-tillage with chisel plow every three years (NT CH); and 4) continuous no-tillage (CNT). To evaluate the dynamics of inorganic N, samples were collected from sub-plots at different times (11 sampling times - T1 to T11). In the CNT and NT CH, the net mineralization rates were higher in the MT and CT systems in the 0-2.5 cm soil layer, while the nitrification rate was higher in the 2.5-5 cm layer. Soon after implementing the white oat management, the mineralization and nitrification rates in all soil layers were higher in the MT and CT systems. In the period of soybean development, in the 0-2.5 and 2.5-5 cm soil layers, the mineralization and nitrification rates were higher in the CNT and NT CH than in the MT and CT systems.
Resumo:
An understanding of the role of organic nitrogen (N) pools in the N supply of eucalyptus plantations is essential for the development of strategies that maximize the efficient use of N for this crop. This study aimed to evaluate the distribution of organic N pools in different compartments of the soil-plant system and their contributions to the N supply in eucalyptus plantations at different ages (1, 3, 5, and 13 years). Three models were used to estimate the contributions of organic pools: Model I considered N pools contained in the litterfall, N pools in the soil microbial biomass and available soil N (mineral N); Model II considered the N pools in the soil, potentially mineralizable N and the export of N through wood harvesting; and Model III (N balance) was defined as the difference between the initial soil N pool (0-10 cm) and the export of N, taking the application of N fertilizer into account. Model I showed that N pools could supply 27 - 70 % of the N demands of eucalyptus trees at different ages. Model II suggested that the soil N pool may be sufficient for 4 - 5 rotations of 5 years. According to the N balance, these N pools would be sufficient to meet the N demands of eucalyptus for more than 15 rotations of 5 years. The organic pools contribute with different levels of N and together are sufficient to meet the N demands of eucalyptus for several rotations.
Resumo:
Tannery sludge contains high concentrations of inorganic elements, such as chromium (Cr), which may lead to environmental pollution and affect human health The behavior of Cr in organic matter fractions and in the growth of cowpea (Vigna unguiculata L.) was studied in a sandy soil after four consecutive annual applications of composted tannery sludge (CTS). Over a four-year period, CTS was applied on permanent plots (2 × 5 m) and incorporated in the soil (0-20 cm) at the rates of 0, 2.5, 5.0, 10.0, and 20.0 Mg ha-1 (dry weight basis). These treatments were replicated four times in a randomized block design. In the fourth year, cowpea was planted and grown for 50 days, at which time we analyzed the Cr concentrations in the soil, in the fulvic acid, humic acid, and humin fractions, and in the leaves, pods, and grains of cowpea. Composted tannery sludge led to an increase in Cr concentration in the soil. Among the humic substances, the highest Cr concentration was found in humin. The application rates of CTS significantly increased Cr concentration in leaves and grains.
Resumo:
The application of pig slurry rates and plant cultivation can modify the soil phosphorus (P) content and distribution of chemical species in solution. The purpose of this study was to evaluate the total P, available P and P in solution, and the distribution of chemical P species in solution, in a soil under longstanding pig slurry applications and crop cultivation. The study was carried out in soil columns with undisturbed structure, collected in an experiment conducted for eight years in the experimental unit of the Universidade Federal de Santa Maria (UFSM), Santa Maria (RS). The soil was an Argissolo Vermelho distrófico arênico (Typic Hapludalf), subjected to applications of 0, 20, 40, and 80 m3 ha-1 pig slurry. Soil samples were collected from the layers 0-5, 5-10, 10-20, 20-30, 30-40, and 40-60 cm, before and after black oat and maize grown in a greenhouse, for the determination of available P, total P and P in the soil solution. In the solution, the concentration of the major cations, anions, dissolved organic carbon (DOC), and pH were determined. The distribution of chemical P species was determined by software Visual Minteq. The 21 pig slurry applications increased the total P content in the soil to a depth of 40 cm, and the P extracted by Mehlich-1 and from the solution to a depth of 30 cm. Successive applications of pig slurry changed the balance between the solid and liquid phases in the surface soil layers, increasing the proportion of the total amount of P present in the soil solution, aside from changing the chemical species in the solution, reducing the percentage complexed with Al and increasing the one complexed with Ca and Mg in the layers 0-5 and 5-10 cm. Black oat and maize cultivation increased pH in the solution, thereby increasing the proportion of HPO42- and reducing H2PO4- species.
Resumo:
ABSTRACT Persistent areas of tailings and deposits from coal and gold mining may present high levels of arsenic (As), mainly in the arsenate form, endangering the environment and human health. The establishment of vegetation cover is a key step to reclaiming these environments. Thus, this study aimed to evaluate the potential of Eucalyptus urophylla and E. citriodora seedlings for use in phytoremediation programs of arsenate-contaminated areas. Soil samples were incubated at increasing rates (0, 50, 100, 200 and 400 mg dm-3) of arsenic (arsenate form, using Na2HAsO4) for 15 days. The seedlings were produced in a substrate (vermiculite + sawdust) and were transplanted to the pots with soil three months after seed germination. The values of plant height and diameter were taken during transplanting and 30, 60 and 90 days after transplanting. In the last evaluation, the total leaf area and biomass of shoots and roots were also determined. The values of available As in soil which caused a 50 % dry matter reduction (TS50%), the As translocation index (TI) from the roots to the shoot of the plants, and its bioconcentration factor (BF) were also calculated. Higher levels of arsenate in the soil significantly reduced the dry matter production of roots and shoots and the height of both species, most notably in E. urophylla plants. The highest levels of As were found in the root, with higher values for E. citriodora (ranging from 253.86 to 400 mg dm-3). The TI and BF were also reduced with As doses, but the values found in E. citriodora were significantly higher than in E. urophylla. E. citriodora plants presented a higher capacity to tolerate As and translocate it to the shoot than E. urophylla. Although these species cannot be considered as hyperaccumulators of As, E. citriodora presented the potential to be used in phytoremediation programs in arsenate-contaminated areas due to the long-term growth period of this species.
Resumo:
The genotypic differences on growth and yield of common bean (Phaseolus vulgaris L.) in response to P supply were evaluated in a field experiment under biological N2 fixation. Eight cultivars were grown at two levels of applied P (12 and 50 kg ha-1 of P -- P1 and P2 respectively), in randomized block design in factorial arrangement. Vegetative biomass was sampled at three ontogenetic stages. The effects of genotype and phosphorus were significant for most traits, but not the genotype ´ phosphorus interaction. The cultivars presented different patterns of biomass production and nutrient accumulation, particularly on root system. At P1, P accumulation persisted after the beginning of pod filling, and P translocation from roots to shoots was lower. The nodule senescence observed after flowering might have reduced N2 fixation during pod filling. The responses of vegetative growth to the higher P supply did not reflect with the same magnitude on yield, which increased only 6% at P2; hence the harvest index was lower at P2. The cultivars with highest yields also presented lower grain P concentrations. A sub-optimal supply of N could have limited the expression of the yield potential of cultivars, reducing the genotypic variability of responses to P levels.
Resumo:
The objective of this study was to establish critical values of the N indices, namely soil-plant analysis development (SPAD), petiole sap N-NO3 and organic N in the tomato leaf adjacent to the first cluster (LAC), under soil and nutrient solution conditions, determined by different statistical approaches. Two experiments were conducted in randomized complete block design with four repli-cations. Tomato plants were grown in soil, in 3 L pot, with five N rates (0, 100, 200, 400 and 800 mg kg-1) and in solution at N rates of 0, 4, 8, 12 and 16 mmol L-1. Experiments in nutrient solution and soil were finished at thirty seven and forty two days after transplanting, respectively. At those times, SPAD index and petiole sap N-NO3 were evaluated in the LAC. Then, plants were harvested, separated in leaves and stem, dried at 70ºC, ground and weighted. The organic N was determined in LAC dry matter. Three statistical procedures were used to calculate critical N values. There were accentuated discrepancies for critical values of N indices obtained with plants grown in soil and nutrient solution as well as for different statistical procedures. Critical values of nitrogen indices at all situations are presented.
Resumo:
The availability and the reserves of organic phosphorus are controlled by its mineralization rate and are also influenced by changes in soil management. The objective of this study was to evaluate the influence of soil covering with different leguminous plant on soil organic P by 31P-NMR spectroscopy. Alkaline soil extracts were obtained from two depths (0-5 and 5-10 cm) of an Ultisol cultivated with herbaceous perennial leguminous plants (Arachis pintoi, Pueraria phaseoloides, Macroptilium atropurpureum). In an adjacent area, samples of the same soil cover with a secondary tropical forest and grass (Panicum maximum) were also collected. The leguminous management was divided into with removal and without removal of shoot parts after cut on soil surface. Phosphate monoesters are the dominant P species in all soil samples and P diesters accumulated on the superficial layer of secondary forest soil. The P amount of this fraction is higher for the legume covered soil when compared with the grass covered soil. The permanence of leguminous plants on the topsoil after the cut promoted an increase in P diester/P monoester ratios. These findings can be accounted for an enhancement of P availability to plants in soils cultivated with leguminous plants.
Resumo:
Ralstonia solanacearum is a soil-borne bacterium causing the widespread disease known as bacterial wilt. Ralstonia solanacearum is also the causal agent of Moko disease of banana and brown rot of potato. Since the last R. solanacearum pathogen profile was published 10 years ago, studies concerning this plant pathogen have taken a genomic and post-genomic direction. This was pioneered by the first sequenced and annotated genome for a major plant bacterial pathogen and followed by many more genomes in subsequent years. All molecular features studied now have a genomic flavour. In the future, this will help in connecting the classical field of pathology and diversity studies with the gene content of specific strains. In this review, we summarize the recent research on this bacterial pathogen, including strain classification, host range, pathogenicity determinants, regulation of virulence genes, type III effector repertoire, effector-triggered immunity, plant signalling in response to R. solanacearum, as well as a review of different new pathosystems.
Resumo:
A study was made to evaluate the effect of a castor oil-based detergent on strawberry crops treated with different classes of pesticides, namely deltamethrin, folpet, tebuconazole, abamectin and mancozeb, in a controlled environment. Experimental crops of greenhouse strawberries were cultivated in five different ways with control groups using pesticides and castor oil-based detergent. The results showed that the group 2, which was treated with castor oil-based detergent, presented the lowest amount of pesticide residues and the highest quality of fruit produced.
Resumo:
Botrytis blight caused by Botrytis cinerea is an important disease of rose (Rosa hybrida) grown in greenhouses in Brazil. As little is known regarding the disease epidemiology under greenhouse conditions, pathogen survival in crop debris and as sclerotia was evaluated. Polyethylene bags with petals, leaves, or stem sections artificially infected with B. cinerea were mixed with crop debris in rose beds, in a commercial plastic greenhouse. High percentage of plant parts with sporulation was detected until 60 days, then sporulation decreased on petals after 120 days, and sharply decreased on stems or leaves after 90 days. Sporulation on petals continued for 360 days, but was not observed on stems after 150 days or leaves after 240 days. Although the fungus survived longer on petals, stems and leaves are also important inoculum sources because high amounts of both are deposited on beds during cultivation. Survival of sclerotia produced on PDA was also quantified. Sclerotia germination was greater than 75% in the initial 210 days and 50% until 360 days. Sclerotia weight gradually declined but they remained viable for 360 days. Sclerotia were produced on the buried petals, mainly after 90 days of burial, but not on leaves or stems. Germination of these sclerotia gradually decreased after 120 days, but lasted until 360 days. Higher weight loss and lower viability were observed on sclerotia produced on petals than on sclerotia produced in vitro
Resumo:
This work objectified to evaluate the efficiency of two meter mechanism of corn seeds when submitted to different forward speed and soil management system during the non-tillage seeding. It was used a factorial design in randomized blocks. The factors whose effects were examined were related to the seeders with pneumatic and horizontal disk meter mechanisms for the distribution of the seeds, to the set tractor-seeder forward speeds (4.4; 8.0 and 9.8 km h-1), and to the soil management system considering the corn no-tillage seeding over minimum tillage with chisel plow and the no-tillage system for the seeding of oat culture (Avena strigosa Schreb). It was verified that the forward speed didn't influence the initial and final stands of plants but it interfered in the regularity of longitudinal distribution of plants. The smallest speed provided the largest percentile of normal spacing between plants. The pneumatic meter mechanism presented better performance than the horizontal disk perforated in the longitudinal distribution of plants. About corn productivity aspect it's indifferent the recommendation of use for pneumatic and perforated horizontal disk meter mechanism of seeds.
Resumo:
Soil tillage is a process that accelerates soil organic matter decomposition transferring carbon to atmosphere, mainly in the CO2 form. In this study, the effect of rotary tillage on soil CO2 emission was investigated, including the presence of crop residues on the surface.Emissions were evaluated during 15 days after tillage in 3 plots: 1) non-tilled and without crop residues on soil surface (NTwo), 2) rotary tiller without the presence of crop residues on soil surface (RTwo), and 3) rotary tiller with the presence of crop residues in soil surface (RTw). Emissions from the RTw plot were higher than the other plots, (0.777 g CO2 m-2 h-1), with the lowest emissions recorded in the NTwo plot (0.414 g CO2 m-2 h-1). Total emission indicates that the difference of C-CO2 emitted to atmosphere corresponds to 3% of the total additional carbon in the crop residues in the RTw plot compared to RTwo. The increase in the RTwo emission in comparison to NTwo was followed by changes in the aggregate size distribution, especially those with average diameter lower than 2 mm. The increase in emission from the RTw plot in relation to RTwo was related to a decrease in crop residue mass on the surface, and its higher fragmentation and incorporation in soil. When the linear correlation between soil CO2 emission, and soil temperature and soil moisture is considered, only the RTw treatment showed significant correlation (p<0.05) with soil moisture.
Resumo:
The aim of this study was to evaluate the possible impacts caused in the soil and in the percolate in lysimeters of drainage with application of different rates of swine wastewater (SW) during the cycle of soybean culture and to assess the productivity of it. The experiment was conducted at the Agricultural Engineering Experimental Center of UNIOESTE. The soil was classified as typical Distroferric Red Latosol. There were twenty-four drainage lysimeters in the area in which the soybean was cultivated, cultivar CD 214. Four SW depths (0; 100; 200 and 300 m³ ha-1) were applied to the soil seven days before the sowing in a single application combined with two mineral fertilizations in the sowing (with and without recommended fertilization during sowing), and three repetitions per treatment. It was realized three collections of percolate in each experimental portion, the first was conducted 40 days after sowing (DAS); the second at 72 DAS, and the third at the end of crop cycle (117 DAS). It was evaluated in the percolate the pH, calcium, magnesium, potassium, phosphorus, and total nitrogen. Based on the results, it was possible to observe that the level of K, P and N in the soil increased according tothe increase of SW rates. The levels of K and P in the percolate were higher for higher rates of SW. The productivity was not influenced by the application of SW or by fertilization.