941 resultados para Bayesian rationality
Resumo:
Testosterone abuse is conventionally assessed by the urinary testosterone/epitestosterone (T/E) ratio, levels above 4.0 being considered suspicious. A deletion polymorphism in the gene coding for UGT2B17 is strongly associated with reduced testosterone glucuronide (TG) levels in urine. Many of the individuals devoid of the gene would not reach a T/E ratio of 4.0 after testosterone intake. Future test programs will most likely shift from population based- to individual-based T/E cut-off ratios using Bayesian inference. A longitudinal analysis is dependent on an individual's true negative baseline T/E ratio. The aim was to investigate whether it is possible to increase the sensitivity and specificity of the T/E test by addition of UGT2B17 genotype information in a Bayesian framework. A single intramuscular dose of 500mg testosterone enanthate was given to 55 healthy male volunteers with either two, one or no allele (ins/ins, ins/del or del/del) of the UGT2B17 gene. Urinary excretion of TG and the T/E ratio was measured during 15 days. The Bayesian analysis was conducted to calculate the individual T/E cut-off ratio. When adding the genotype information, the program returned lower individual cut-off ratios in all del/del subjects increasing the sensitivity of the test considerably. It will be difficult, if not impossible, to discriminate between a true negative baseline T/E value and a false negative one without knowledge of the UGT2B17 genotype. UGT2B17 genotype information is crucial, both to decide which initial cut-off ratio to use for an individual, and for increasing the sensitivity of the Bayesian analysis.
Resumo:
An important problem in descriptive and prescriptive research in decision making is to identify regions of rationality, i.e., the areas for which heuristics are and are not effective. To map the contours of such regions, we derive probabilities that heuristics identify the best of m alternatives (m > 2) characterized by k attributes or cues (k > 1). The heuristics include a single variable (lexicographic), variations of elimination-by-aspects, equal weighting, hybrids of the preceding, and models exploiting dominance. We use twenty simulated and four empirical datasets for illustration. We further provide an overview by regressing heuristic performance on factors characterizing environments. Overall, sensible heuristics generally yield similar choices in many environments. However, selection of the appropriate heuristic can be important in some regions (e.g., if there is low inter-correlation among attributes/cues). Since our work assumes a hit or miss decision criterion, we conclude by outlining extensions for exploring the effects of different loss functions.
Resumo:
We extend Aumann's theorem [Aumann 1987], deriving correlated equilibria as a consequence of common priors and common knowledge of rationality, by explicitly allowing for non-rational behavior. Wereplace the assumption of common knowledge of rationality with a substantially weaker one, joint p-belief of rationality, where agents believe the other agents are rational with probability p or more. We show that behavior in this case constitutes a kind of correlated equilibrium satisfying certain p-belief constraints, and that it varies continuously in the parameters p and, for p sufficiently close to one,with high probability is supported on strategies that survive the iterated elimination of strictly dominated strategies. Finally, we extend the analysis to characterizing rational expectations of interimtypes, to games of incomplete information, as well as to the case of non-common priors.
Resumo:
By identifying types whose low-order beliefs up to level li about the state of nature coincide, weobtain quotient type spaces that are typically smaller than the original ones, preserve basic topologicalproperties, and allow standard equilibrium analysis even under bounded reasoning. Our Bayesian Nash(li; l-i)-equilibria capture players inability to distinguish types belonging to the same equivalence class.The case with uncertainty about the vector of levels (li; l-i) is also analyzed. Two examples illustratethe constructions.
Resumo:
The forensic two-trace problem is a perplexing inference problem introduced by Evett (J Forensic Sci Soc 27:375-381, 1987). Different possible ways of wording the competing pair of propositions (i.e., one proposition advanced by the prosecution and one proposition advanced by the defence) led to different quantifications of the value of the evidence (Meester and Sjerps in Biometrics 59:727-732, 2003). Here, we re-examine this scenario with the aim of clarifying the interrelationships that exist between the different solutions, and in this way, produce a global vision of the problem. We propose to investigate the different expressions for evaluating the value of the evidence by using a graphical approach, i.e. Bayesian networks, to model the rationale behind each of the proposed solutions and the assumptions made on the unknown parameters in this problem.
Resumo:
In many areas of economics there is a growing interest in how expertise andpreferences drive individual and group decision making under uncertainty. Increasingly, we wish to estimate such models to quantify which of these drive decisionmaking. In this paper we propose a new channel through which we can empirically identify expertise and preference parameters by using variation in decisionsover heterogeneous priors. Relative to existing estimation approaches, our \Prior-Based Identification" extends the possible environments which can be estimated,and also substantially improves the accuracy and precision of estimates in thoseenvironments which can be estimated using existing methods.
Resumo:
The interpretation of the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) is based on a 4-factor model, which is only partially compatible with the mainstream Cattell-Horn-Carroll (CHC) model of intelligence measurement. The structure of cognitive batteries is frequently analyzed via exploratory factor analysis and/or confirmatory factor analysis. With classical confirmatory factor analysis, almost all crossloadings between latent variables and measures are fixed to zero in order to allow the model to be identified. However, inappropriate zero cross-loadings can contribute to poor model fit, distorted factors, and biased factor correlations; most important, they do not necessarily faithfully reflect theory. To deal with these methodological and theoretical limitations, we used a new statistical approach, Bayesian structural equation modeling (BSEM), among a sample of 249 French-speaking Swiss children (8-12 years). With BSEM, zero-fixed cross-loadings between latent variables and measures are replaced by approximate zeros, based on informative, small-variance priors. Results indicated that a direct hierarchical CHC-based model with 5 factors plus a general intelligence factor better represented the structure of the WISC-IV than did the 4-factor structure and the higher order models. Because a direct hierarchical CHC model was more adequate, it was concluded that the general factor should be considered as a breadth rather than a superordinate factor. Because it was possible for us to estimate the influence of each of the latent variables on the 15 subtest scores, BSEM allowed improvement of the understanding of the structure of intelligence tests and the clinical interpretation of the subtest scores.
Resumo:
This paper analyses and discusses arguments that emerge from a recent discussion about the proper assessment of the evidential value of correspondences observed between the characteristics of a crime stain and those of a sample from a suspect when (i) this latter individual is found as a result of a database search and (ii) remaining database members are excluded as potential sources (because of different analytical characteristics). Using a graphical probability approach (i.e., Bayesian networks), the paper here intends to clarify that there is no need to (i) introduce a correction factor equal to the size of the searched database (i.e., to reduce a likelihood ratio), nor to (ii) adopt a propositional level not directly related to the suspect matching the crime stain (i.e., a proposition of the kind 'some person in (outside) the database is the source of the crime stain' rather than 'the suspect (some other person) is the source of the crime stain'). The present research thus confirms existing literature on the topic that has repeatedly demonstrated that the latter two requirements (i) and (ii) should not be a cause of concern.
Resumo:
This paper argues that economic rationality and ethical behavior cannotbe reduced one to the other, casting doubts on the validity of formulaslike 'profit is ethical' or 'ethics pays'. In order to express ethicaldilemmas as opposing economic interest with ethical concerns, we proposea model of rational behavior that combines these two irreducible dimensions in an open but not arbitrary manner. Behaviors that are neither ethicalnor profitable are considered irrational (non-arbitrariness). However,behaviors that are profitable but unethical, and behaviors that are ethicalbut not profitable, are all treated as rational (openness). Combiningethical concerns with economic interest, ethical business is in turn anoptimal form of rationality between venality and sacrifice.Because every one prefers to communicate that he acts ethically, ethicalbusiness remains ambiguous until some economic interest is actuallysacrificed. We argue however that ethical business has an interest indemonstrating its consistency between communication and behavior by atransparent attitude. On the other hand, venal behaviors must remainconfidential to hide the corresponding lack of consistency. Thisdiscursive approach based on transparency and confidentiality helpsto further distinguish between ethical and unethical business behaviors.
Resumo:
We provide methods for forecasting variables and predicting turning points in panel Bayesian VARs. We specify a flexible model which accounts for both interdependencies in the cross section and time variations in the parameters. Posterior distributions for the parameters are obtained for a particular type of diffuse, for Minnesota-type and for hierarchical priors. Formulas for multistep, multiunit point and average forecasts are provided. An application to the problem of forecasting the growth rate of output and of predicting turning points in the G-7 illustrates the approach. A comparison with alternative forecasting methods is also provided.
Resumo:
There is evidence showing that individual behavior often deviates fromthe classical principle of maximization. This evidence raises at least two importantquestions: (i) how severe the deviations are and (ii) which method is the best forextracting relevant information from choice behavior for the purposes of welfare analysis.In this paper we address these two questions by identifying from a foundationalanalysis a new measure of the rationality of individuals that enables the analysis ofindividual welfare in potentially inconsistent subjects, all based on standard revealedpreference data. We call such measure minimal index.
Resumo:
This paper studies the short run correlation of inflation and money growth. We study whether a model of learning can do better than a model of rational expectations, we focus our study on countries of high inflation. We take the money process as an exogenous variable, estimated from the data through a switching regime process. We findthat the rational expectations model and the model of learning both offer very good explanations for the joint behavior of money and prices.